Econometrics M1
  • Lectures
    • 1 - Linear Regression
    • 2 - OLS Properties
    • 3 - Model Specification
    • 4 - Model Selection
    • 5-6 - Asymptotic Theory
    • 7 - Hypothesis Testing
    • 8 - Heterosckedasticity and Multiple Testing
  • Exercises
    • 1 - Hands-on Linear Regression
    • 2 - Specification
    • 3 - Selection
  • Syllabus
  • Definitions
  • Resources

On this page

  • Terminology and notation
  • Definitions

Definitions, Terminology and Notations

A repository of potentially useful definitions, terminology and notations

Terminology and notation

For nn individuals indexed by ii (i=1,…,ni = 1,\dots,n), in the linear regression model yi=β0+β1x1i+...+βkxki+eiy_i = \beta_0 + \beta_1 x_{1i} + ... + \beta_k x_{ki} + e_i,

  • yy is called the dependent variable, the regressand, the explained variable, or the left-hand side variable,
  • x1,...,xkx_{1}, ..., x_{k} are the kk independent variables, the regressors, the explanatory variables, or the right-hand side variables,
  • x↦β0+β1xx \mapsto \beta_0 + \beta_1 x is the population regression function,
  • β0\beta_0 is the intercept,
  • β1\beta_1 is the slope parameter associated with x1x_1,
  • Together β0\beta_0 and β1\beta_1 are the coefficients or parameters of the regression model,
  • eie_i is the error or disturbance term.

In vector form, this is equivalent to y=β0+β1x1+...+βkxk+ey = \beta_0 + \beta_1 x_1 + ... + \beta_k x_{k} + e where:

y=[y1⋮yn]n×1,∀j∈{1,..,k}xj=[xj,1⋮xj,n]n×1ande=[e1⋮en]n×1y = \begin{bmatrix} y_1\\ \vdots\\ y_n \end{bmatrix}_{n\times 1}, \quad \forall j \in \{1, .., k\} \quad x_j = \begin{bmatrix} x_{j,1}\\ \vdots\\ x_{j,n} \end{bmatrix}_{n\times 1} \quad and \quad e = \begin{bmatrix} e_1\\ \vdots\\ e_n \end{bmatrix}_{n\times 1}

In matrix form, this equivalent to y=Xβ+ey = X\beta + e where:

X=[1x1,1...xk,11x1,2...xk,2⋮⋮⋮1x1,n...xk,n]n×(k+1)andβ=[β0⋮βk](k+1)×1X = \begin{bmatrix} 1 & x_{1,1} & ... & x_{k,1}\\ 1 & x_{1,2} & ... & x_{k,2}\\ \vdots & \vdots & & \vdots\\ 1 & x_{1,n} & ... & x_{k,n}\\ \end{bmatrix}_{n\times (k + 1)} \quad and \quad \beta = \begin{bmatrix} \beta_{0}\\ \vdots\\ \beta_{k} \end{bmatrix}_{(k+1)\times 1}

Note

In this class, vectors are in lower case (eg yy) and matrices in caps (eg XX). Most of the time, individual observations will be indexed by ii (eg yiy_i); these are scalars.

Definitions

 
 

Made with R and Quarto
Source code on GitHub