class: right, middle, inverse, title-slide .title[ # Lecture 3 - Power and Causal Inference ] .subtitle[ ##
Topics in Econometrics ] .author[ ### Vincent Bagilet ] .date[ ### 2024-09-25 ] --- # Exam - **Final project** in pairs - Research question and data `\(\to\)` fake data simulations `\(\to\)` analysis on the actual dataset - Come up with a research question and data by October 9th - We will suggest some data sets - 3 pages reports & code in Quarto - November 20th: **15 min presentations** --- class: titled, middle # Summary from last week - **Goal** in applied research: accurately estimate the parameters of interest - Capturing these parameters can be challenging - **Simulations** can help avoid some pitfalls - *Can we hope to accurately estimate the true effect of interest?* - If the analysis faces issues in simulations, it will probably also in an actual setting --- class: titled, middle # Usefulness of simulations - Accurate estimation, at least in a "pristine" setting - What about a more complex setting? - What happens to our conclusions if some hypotheses do not hold? - Simulations can help to understand statistical methods --- # Steps of the simulation approach -- 1. Define a DGP and the distribution of variables -- 1. Set parameters values (`baseline_param`) -- 1. Generate a data set (`generate_data()`) -- 1. Estimate the effect in the generated data set (`run_estim()`) -- 1. Repeat many times (`compute_sim()` and `pmap()`) -- 1. Compute the measure of interest -- 1. Change parameters values (potentially) -- 1. Complexify the DGP -- 1. Repeat --- class: right, middle, inverse layout:false # Exercise ## Simulating an RCT --- class: titled, middle ## Setting - Impact of receiving extra lessons on students’ grades - Simulate an experiment (RCT): `\(\forall i \in \{1, .., n\}, \quad Grade_i = \alpha_0 + \beta_0 Treat_i + u_i\)` - Which sample size and proportion of treated to have a high probability of detecting the effect? ## How? - Vary the parameters values to find "correct" ones --- class: titled, middle # Coding in Quarto - Create a new `.qmd` document - Copy/paste (from the website) the **necessary** lines of code to run a simulation - Modify parameters values - Plot how power evolves with `\(n\)` --- class: right, middle # Switch to Quarto document for coding --- # Simulations so far - We have implemented a simple simulation - We learned that: -- - It can help detect design issues - They are actually pretty simple to implement -- - Now we can: -- - Complexify the data generating process (mostly modify `generate_data()`) - Explore other challenges ??? - We generated fake data, estimated our parameter of interest, repeated with different parameters --- class: right, middle, inverse # A primer on exaggeration --- <img src="data:image/png;base64,#slides_3_exaggeration_files/figure-html/graph_camerer_initial_study-1.png" width="90%" style="display: block; margin: auto;" /> --- <img src="data:image/png;base64,#slides_3_exaggeration_files/figure-html/graph_camerer_replication_study-1.png" width="90%" style="display: block; margin: auto;" /> --- <img src="data:image/png;base64,#slides_3_exaggeration_files/figure-html/graph_camerer_replication_original-1.png" width="90%" style="display: block; margin: auto;" /> --- <img src="data:image/png;base64,#slides_3_exaggeration_files/figure-html/graph_camerer_iter-1.png" width="90%" style="display: block; margin: auto;" /> --- <img src="data:image/png;base64,#slides_3_exaggeration_files/figure-html/graph_camerer_signif-1.png" width="90%" style="display: block; margin: auto;" /> --- <img src="data:image/png;base64,#slides_3_exaggeration_files/figure-html/graph_camerer_zoom-1.png" width="90%" style="display: block; margin: auto;" /> --- class: titled, middle # Evolution - Exaggeration is a decreasing function of statistical power - Decreases with precision - Decreases with effect size - Can be result from the use of causal methods --- class: right, middle, inverse # Causal Exaggeration --- # The Confounding-Exaggeration Trade-Off .pull-left[ - Challenge of empirical economics: identifying causal effects - Only use part of the variation: the exogenous part - Reduces precision and statistical power - `\(\mathbb{E}[\hat{\beta}] = \beta\)` but `\(\mathbb{E}[\hat{\beta} | \text{ Significant}] \neq \beta\)` ] -- .pull-right[ <img src="data:image/png;base64,#images/intuition_trade_off.png" width="600" style="display: block; margin: auto;" /> ] --- <img src="data:image/png;base64,#images/graph_distrib_RDD-1.png" width="800" style="display: block; margin: auto;" /> --- <img src="data:image/png;base64,#images/graph_distrib_RDD-2.png" width="800" style="display: block; margin: auto;" /> --- <img src="data:image/png;base64,#images/graph_distrib_RDD-3.png" width="800" style="display: block; margin: auto;" /> --- <img src="data:image/png;base64,#images/graph_distrib_RDD-4.png" width="800" style="display: block; margin: auto;" /> --- class: right, middle, inverse # Thank you!