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Steps of an Econometrics Analysis

o : decisions of data collection and measurement

o eg, decisions related to sample size and ensuring exogeneity of the treatment
. : define statistical models

o egselecting variables, functional forms, etc
. : estimation and questions of statistical inference

o egstandard errors, hypothesis tests, and estimator properties



Goal of the session

Main focus in causal inference is often

So far, we have: a good question and a convincing quasi-random allocation of the treatment

How do we make inference for the population?

We make causal claims based on significance = need and

Aim to give intuition about some key points and provide you with resources to learn more about
them



Modelling




Modelling assumptions matter

OLS valid under a set of assumptions: the Gauss-Markov conditions

If these assumptions, or any modelling one, do not hold we cannot make reliable inference

Let’s see why!

. : specification choices affect the results of our studies and our ability to
make reliable inference



Gauss-Markov conditions

Assumption

Idea

If violated

Model linear in its

Estimates misspecified =

parameters biased/inconsistent

(X'X) " exists Coefficients not identifiable
Elu | X;] =0 Estimator biased

Cov(ui,uj |X) = O for Invalid inference

i #+ j(egno

autocorrelation)

e 4a+4b-=

Var(u; | X;) = o® = cst

Inefficient



Implications

e Finite sample properties:

o1l — S:EOLS unbiased

—~

o1l - 4B, efficient (Best Unbiased Estimator)

e Asymptotically:
o Unbiased
o Normally distributed
o Efficient



Normally distributed estimator

. for making inference (eg computing confidence intervals or p-values)

e Additional assumption: => normally distributed

OLS
e |ferrors non-normal
o Alternative way to compute SE (eg bootstrap)

o If nis large enough, Central Limit Theorem (CLT) + Weak Law of Large Numbers (WLLN)
= B, aPproximately normal
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Exercise

o Generate fake data and analyse the impact of violations of some of these assumptions
1. Non-linearity
2. Perfect collinearity
3. Endogeneity
4. Autocorrelation
5. Heteroskedasticity

6. Non-normal errors
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Non-linear

Code  Regressiontable Graph

n <- 1000
alpha <- 10
beta <- 2
mu_x <— 2
sigma_x <- 1
sigma_u <- 2

data_non_linear <- tibble(

X = rnorm(n, mu_x, sigma_x),
u = rnorm(n, @, sigma_u),
y = alpha + beta*x™2 + u

)
reg_non_linear <- lm(y ~ x, data = data_non_linear)

# list("Non-linear" = reg_non_linear) |>
# modelsummary(gof_omit = "IC|Adj|F|RMSE|Log")
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Collinearity

Code @ Perfect collinearity  Almost perfect collinearity

gamma <- 0.2

data_collin <- tibble(

X = rnorm(n, mu_x, sigma_x),

w = 0.3%Xx,

u = rnorm(n, @, sigma_u),

y = alpha + betakx + gammaxw + u

)
reg_collin <- lm(y ~ x + w, data = data_collin)

# list("Perfect collin." = reg_collin) |>
# modelsummary(gof_omit = "IC|Adj|F|RMSE|Log")

data_almost_collin <- tibble(

x = rnorm(n, mu_x, sigma_x),

w = 0.3%x + rnorm(n, 0, 0.01),

u = rnorm(n, @, sigma_u),

y = alpha + betakx + gammaxw + u

)
reg_almost_collin <- lm(y ~ x + w, data = data_almost_collin)

# list("Almost perfect collin." = reg_almost_collin) |>
# modelsummary(gof_omit = "IC|Adj|F|RMSE|Log")



Endogeneity

Code @ Regression table

data_endog <- tibble(
rnorm(n, mu_x, sigma_x),

X =
u = 0.53% x + rnorm(n, @, sigma_u),
y = alpha + beta*x + u

)

reg_endog <- lm(y ~ x, data = data_endog)

# list("Endogeneity" = reg_endog) |>
# modelsummary(gof_omit = "IC|Adj|F|RMSE|Log")
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Autocorrelation

Code @ Regression table

u_auto <— numeric(n)
for (i in 2:n) u_auto[i] <- @0.9*u_auto[i-1] + rnorm(1, @, sigma_u)

data_auto <- tibble(
X = rnorm(n, mu_x, sigma_x),
u = u_auto,
y = alpha + betaxx + u

)

reg_auto <- lm(y ~ x, data = data_auto)

# reg_auto |>
# modelsummary(gof_omit = "IC|Adj|F|RMSE|Log", vcov = c("classical™, "HAC"))



Heteroskedasticity

Code  Regressiontable Graph

data_heterosked <- tibble(
X = rnorm(n, mu_x, sigma_x),
u rnorm(n, @, sigma_u + x"2),
y = alpha + beta*x + u

)

reg_heterosked <- lm(y ~ x, data = data_heterosked)

# reg_heterosked |>
# modelsummary(gof_omit = "IC|Adj|F|RMSE|Log", vcov = c("classical", "robust"))



Non-normal errors

Code @ Regression table

df <- 2

data_non_normal <- tibble(

X = rnorm(n, mu_x, sigma_x),
u = rt(n, df), #fatter tails
y = alpha + beta*x + u

)

reg_non_normal <- lm(y ~ x, data = data_non_normal)

# reg_non_normal |>
# modelsummary(gof_omit = "IC|Adj|F|RMSE|Log", vcov = c("classical™, "bootstrap"))
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Limited outcome models

e Often, yis limited: , , ,etc
e Linear regression is not appropriate:

o |t does not take the constraints on y into account

o jewrongly assumes linearity and errors non-normal
e Use (GLMs):

o |dea: uses aninvertible link function g to transform a limited y into a continuous variable

o g(E[yIX]) =8,+B,X, +...+B.X;
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Limited outcome models

Limited y Example Regression model

y € {0,1} Probit, logit, ...

y €10,1,2,3,...} Poisson, negative binomial, ...

eg Censored regression models (eg tobit)
y= max (0,y")
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Binary outcome

Example

e The outcome follows a Bernoulli distribution: y|X ~ Ber ()

e Aregression model expresses the conditional probability 7 = P[y = 1|X] as a function of X and

pir =g (XB)

Republican vote and income
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Binary outcome
Models

o giX> X

o Almost always yields biased and inconsistent estimates

o g:X > log(%),the logit function

g: probit, ie the quantile function of the standard normal distribution (and g~ is the CDF of
the normal)

©)

(@]

Rule of thumb: coefs ~ logit coefs divided by 1.6

o Very similar to logit; sometimes easier to implement
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Binary outcome models

Interpreting coefficients

e (Fgivesthe BUT not the magnitude
e The depends on X: effects largest in the middle of the distribution

Inverse logit function

0.75
0.50
0.25

0.00



Binary outcome models

Example fits

Comparison of LPM, logit, and probit models
Probability of voting republican by income

= |ogit lpm probit
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Count data models

o The Poisson distribution Pois (1) models the number of events occurring in a fixed interval
if when events occur idependently and at a constant mean rate

o Choice function: In
o Imposes V| y|X| = E[y|X]

o The negative binomial distribution NB( p,r) models the umber of successes in a sequence
of iid Ber ( p) trials before r failures occur

o Allows V| ylX| # E|y|X]
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A note on controls

e Overall two reasons to include controls:
1. of the treatment

o Necessary for identification

o Tobetterexplainy: / R* ( =1—FUV) and \, d2)
e Adjusting for pre-treatment covariates may
o Reduce the variation in y, increases precision?y

o Reduce the variation in x, decreases precision I

Bad controls

Do not adjust for post-treatment variables that may be affected by the treatment
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Simulating bad controls

Code Table

#reuse the parameters from above

n <- 10000 #to limit sampling variation
mu_b <- 3

sigma_b <- 1

gamma <- 5

kappa <- 4
sigma_a <- 2
delta <- 0

data_bad_control <- tibble(
X = rnorm(n, mu_x, sigma_x),
= rnorm(n, @, sigma_u),
= rnorm(n, mu_b, sigma_b),
= kappa*x + rnorm(n, @, sigma_a),
= alpha + betaxx + gammaxb + deltaxa + u

< O T C

)

reg_short <- 1m(data = data_bad_control, y ~ x)

reg_pre <- lm(data = data_bad_control, y ~ x + b)

reg_post <- lm(data = data_bad_control, y ~ x + a)
reg_pre_post <- lm(data = data_bad_control, y ~ x + b + a)



Analysis




SEs: what are they?

Standard errors = estimate of
Tell us how precise estimates are, how much Ewould vary across repeated samples
They determine confidence intervals and p-values

An example will better illustrate
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lllustration of sampling variability

Relationship between education and wage in fake data

-~ |nSample

Wage ($)

50000

40000

30000

20000

10000

NA

6

Education (Year)
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lllustration of sampling variability
Relationship between education and wage in fake data
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lllustration of sampling variability
Relationship between education and wage in fake data
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lllustration of sampling variability
Relationship between education and wage in fake data
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Estimates of the parameter of interest
Computed on 30 different data sets
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Distribution of 150 estimates
Computed on 150 different samples
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Estimate
Each dot represents one estimate
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Why care about them?

e Violations of classical assumptions:

o : variance depends on X

o . errors correlated within groups
e |mplications:

o t-tests and Cls misleading

o Ingeneral, SEs too small = inference too optimistic
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(Non-)spherical errors

e Under assumptions 1 — 3 we saw earlier, the asymptotic distribution ofﬁOLS is

Bors~N (B, (XX) ™' X' ZX(Xx'x) )

If spherical errors (ie X = o2I), use unbiased sample variance

If non-spherical errors, need a covariance matrix estimator that is consistent under this
misspecification
e = use of the variance ((X’X) ' X=X (X'X) ")

bread meat bread

Heteroskedasticity: compute

Autocorrelation: compute if correlated in time/space
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Why clustering SEs

e When errors are correlated within groups (e.g. individuals, firms, regions), clustering adjust for
this

[E[ul-u ilX ] # 0 for i, j in the same cluster

o Panel data: repeated measures of same unit

o Group-level treatment, eg policy at regional level with many individuals per region

(©)

We do not have N independent observations but G clusters

(@]

eg 10 classrooms of 30 students does not correspond to 300 independent observations

(©)

The real sample size is closer to the number of clusters, not observations
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What clustering does

e Do not affect point estimates

e Allows for intra-cluster correlation and adjusts the effective number of independent
observations

e |ncreases SEs to reflect within-group dependence = wider Cls

A ) 7y —1 1 ’ ’ 7y —1
Varczz(ﬁ) = (X'X) <n_ngGXg rgrng) (X'X)

where X, and r, are data and residuals for cluster g

e [ntuition: each cluster provides one independent piece of information about how residuals co-
evolve with regressors
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Which level to cluster at?

Clustering accounts for correlation in residuals

= thelevel of clustering depends on
Rule of thumb:

o Cluster at the level of the shock or treatment variation

o If unsure, cluster higher rather than lower

If level of clustering too low, SEs too small, overconfidence in results

If level of clustering too large, SEs too large, under reject
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When is clustering difficult to implement?

When (eg < 30) = asymptotic results unreliable

When complex dependence or unclear correlation structure

When model residuals violate independence in unknown ways

Solution

o methods (eg bootstrap)

o Hierarchical clustering
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Bootstrap

. : simulate the sampling variability by resampling from our data

1. Draw samples ( )

2. Estimatejéon each sample

3. Compute the SD ofg across replications
4. That SD = bootstrap SE

e When resampling, respect the correlation structure:
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Summaries




Summary of today

Regression models and OLS estimation rest on a set of

Ensure estimates are unbiased, efficient, and statistically valid
When fail, estimates are biased and standard errors misleading
We reviewed these modelling assumptions and discuss

Limited outcome models or clustering help the issues
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Goal of the whole course

Give us a deeper understanding of:

N
.

e How regression works “
e Causal identification strategies and their assumptions

e How , ,and choices shape empirical results
e Common pitfalls and challenges in empirical work

e Howtouse to explore estimator behavior and diagnose potential problems
specific to your own cases

e Existing and where to find additional information on a specific topic
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To mention when pitching your analysis

1.

e What causal effect of interest are you trying to estimate?
2.

e What ideal experiment would capture the causal effect?
3.

e How are the observational data used to make comparisons that approximate such an
experiment?

(including assumptions made when constructing standard errors)

5. that support the identifying assumptions
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To also mention in your pitch

o Why is your research question important?

(®)

Are the identifying assumptions plausible?

@)

Are there unexplained results?

©)

Gap between policy questions and the analyses performed?

@]

Generalization to other populations and settings?
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Summary of the entire course

Q Take away messages

e Your and underlying are crucial

o What are you estimating exactly with your model?
o Which observations contribute to identification?

e Always wonder what you are

e Use to explore and understand points

e Think about what is the in your model:
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