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Introduction
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Short feedback form

https://forms.gle/wxwZNFXyPxprLELT7
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Steps of an Econometrics Analysis

Design: decisions of data collection and measurement

eg, decisions related to sample size and ensuring exogeneity of the treatment

Modelling: define statistical models

eg selecting variables, functional forms, etc

Analysis: estimation and questions of statistical inference

eg standard errors, hypothesis tests, and estimator properties
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Goal of the session

Main focus in causal inference is often identification

So far, we have: a good question and a convincing quasi-random allocation of the treatment

How do we make inference for the population?

We make causal claims based on significance ⇒  need modelling assumptions to hold and
reliable SEs

Aim to give intuition about some key points and provide you with resources to learn more about
them
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Modelling
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Modelling assumptions matter

OLS valid under a set of assumptions: the Gauss–Markov conditions

If these assumptions, or any modelling one, do not hold we cannot make reliable inference

Let’s see why!

Modelling matters: specification choices affect the results of our studies and our ability to
make reliable inference
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Gauss–Markov conditions

Assumption Idea If violated

1. Linearity Model linear in its
parameters

Estimates misspecified ⇒
biased/inconsistent

2. No perfect collinearity (𝑋′𝑋 )
−1 exists Coefficients not identifiable

3. Exogeneity 𝐸[𝑢𝑖 ∣ 𝑋𝑖 ] = 0 Estimator biased

4.a. Independent errors 𝐶𝑜𝑣(𝑢𝑖,𝑢𝑗 ∣ 𝑋) = 0 for

𝑖 ≠ 𝑗 (eg no
autocorrelation)

Invalid inference

4.b. Homoskedasticity 𝑉𝑎𝑟 (𝑢𝑖 ∣ 𝑋𝑖 ) = 𝜎2 = cst Inefficient

4.a + 4.b = spherical errors
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Implications

Finite sample properties:

1 →  3: ̂𝛽
𝑂𝐿𝑆

 unbiased

1 →  4: ̂𝛽
𝑂𝐿𝑆

 efficient (Best Linear Unbiased Estimator)

Asymptotically:

Unbiased

Normally distributed

Efficient
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Normally distributed estimator

Required for making inference (eg computing confidence intervals or p-values)

Additional assumption: normal errors ⇒  ̂𝛽
𝑂𝐿𝑆

 normally distributed

If errors non-normal

Alternative way to compute SE (eg bootstrap)

If 𝑛 is large enough, Central Limit Theorem (CLT) + Weak Law of Large Numbers (WLLN)
⇒  ̂𝛽

𝑂𝐿𝑆
 approximately normal
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Exercise

Generate fake data and analyse the impact of violations of some of these assumptions

1. Non-linearity

2. Perfect collinearity

3. Endogeneity

4. Autocorrelation

5. Heteroskedasticity

6. Non-normal errors
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Non-linear

Code Regression table Graph

n <- 10001
alpha <- 102
beta <- 23
mu_x <- 24
sigma_x <- 15
sigma_u <- 26

7
data_non_linear <- tibble(8
  x = rnorm(n, mu_x, sigma_x),9
  u = rnorm(n, 0, sigma_u),10
  y = alpha + beta*x^2 + u  11
)12

13
reg_non_linear <- lm(y ~ x, data = data_non_linear) 14

15
# list("Non-linear" = reg_non_linear) |> 16
#   modelsummary(gof_omit = "IC|Adj|F|RMSE|Log")17
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Collinearity

Code Perfect collinearity Almost perfect collinearity

gamma <- 0.21
2

data_collin <- tibble(3
  x = rnorm(n, mu_x, sigma_x),4
  w = 0.3*x,5
  u = rnorm(n, 0, sigma_u),6
  y = alpha + beta*x + gamma*w + u  7
)8

9
reg_collin <- lm(y ~ x + w, data = data_collin)10

11
# list("Perfect collin." = reg_collin) |> 12
#   modelsummary(gof_omit = "IC|Adj|F|RMSE|Log")13

14
data_almost_collin <- tibble(15
  x = rnorm(n, mu_x, sigma_x),16
  w = 0.3*x + rnorm(n, 0, 0.01),17
  u = rnorm(n, 0, sigma_u),18
  y = alpha + beta*x + gamma*w + u  19
)20

21
reg_almost_collin <- lm(y ~ x + w, data = data_almost_collin)22

23
# list("Almost perfect collin." = reg_almost_collin) |> 24
#   modelsummary(gof_omit = "IC|Adj|F|RMSE|Log")25
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Endogeneity

Code Regression table

data_endog <- tibble(1
  x = rnorm(n, mu_x, sigma_x),2
  u = 0.5 * x + rnorm(n, 0, sigma_u),3
  y = alpha + beta*x + u  4
)5

6
reg_endog <- lm(y ~ x, data = data_endog)7

8
# list("Endogeneity" = reg_endog) |> 9
#   modelsummary(gof_omit = "IC|Adj|F|RMSE|Log")10
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Autocorrelation

Code Regression table

u_auto <- numeric(n)1
for (i in 2:n) u_auto[i] <- 0.9*u_auto[i-1] + rnorm(1, 0, sigma_u)2

3
data_auto <- tibble(4
  x = rnorm(n, mu_x, sigma_x),5
  u = u_auto,6
  y = alpha + beta*x + u7
) 8

9
reg_auto <- lm(y ~ x, data = data_auto) 10

11
# reg_auto |>12
#   modelsummary(gof_omit = "IC|Adj|F|RMSE|Log", vcov = c("classical", "HAC"))13
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Heteroskedasticity

Code Regression table Graph

data_heterosked <- tibble(1
  x = rnorm(n, mu_x, sigma_x),2
  u = rnorm(n, 0, sigma_u + x^2),3
  y = alpha + beta*x + u  4
)5

6
reg_heterosked <- lm(y ~ x, data = data_heterosked) 7

8
# reg_heterosked |> 9
#   modelsummary(gof_omit = "IC|Adj|F|RMSE|Log", vcov = c("classical", "robust"))10
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Non-normal errors

Code Regression table

df <- 21
2

data_non_normal <- tibble(3
  x = rnorm(n, mu_x, sigma_x),4
  u = rt(n, df), #fatter tails5
  y = alpha + beta*x + u  6
)7

8
reg_non_normal <- lm(y ~ x, data = data_non_normal)9

10
# reg_non_normal |> 11
#   modelsummary(gof_omit = "IC|Adj|F|RMSE|Log", vcov = c("classical", "bootstrap"))12
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Limited outcome models

Often, 𝑦 is limited: binary, categorical, censored, etc

Linear regression is not appropriate:

It does not take the constraints on 𝑦 into account

ie wrongly assumes linearity and errors non-normal

Use Generalized Linear Models (GLMs):

Idea: uses an invertible link function 𝑔 to transform a limited 𝑦 into a continuous variable

𝑔 (𝔼[𝑦|𝑋] ) = 𝛽
0

+ 𝛽
1
𝑋1 + ... + 𝛽

𝑘
𝑋𝑘
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Limited outcome models

Limited 𝑦 Example Regression model

Binary 𝑦 ∈ {0, 1} Probit, logit, …

Count 𝑦 ∈ {0, 1, 2, 3, ...} Poisson, negative binomial, …

Censored eg
𝑦 = max (0, 𝑦* )

Censored regression models (eg tobit)
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Binary outcome
Example

The outcome follows a Bernoulli distribution: 𝑦|𝑋 ∼ 𝐵𝑒𝑟 (𝜋 )

A regression model expresses the conditional probability 𝜋 = 𝑃[𝑦 = 1|𝑋]  as a function of 𝑋 and
𝛽: 𝜋 = 𝑔−1 (𝑋′𝛽 )
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Binary outcome
Models

Linear Probability Model

𝑔:𝑥↦ 𝑥

Almost always yields biased and inconsistent estimates

Logistic regression model

𝑔:𝑥↦ 𝑙𝑜𝑔(
𝑥

1 − 𝑥
) , the logit function

Probit regression model

g: probit, ie the quantile function of the standard normal distribution (and 𝑔−1 is the CDF of
the normal)

Rule of thumb: coefs ≃  logit coefs divided by 1.6

Very similar to logit; sometimes easier to implement
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Binary outcome models
Interpreting coefficients

𝛽 gives the direction BUT not the magnitude

The marginal effect depends on 𝑋: effects largest in the middle of the distribution
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Binary outcome models
Example fits
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Count data models

Poisson regression model

The Poisson distribution Pois (𝜆 )  models the number of events occurring in a fixed interval
if when events occur idependently and at a constant mean rate

Choice function: ln

Imposes 𝕍[𝑦|𝑋] = 𝔼[𝑦|𝑋]

Negative binomial model

The negative binomial distribution 𝑁𝐵 (𝑝, 𝑟 )  models the umber of successes in a sequence
of iid 𝐵𝑒𝑟 (𝑝 )  trials before 𝑟 failures occur

Allows 𝕍[𝑦|𝑋] ≠ 𝔼[𝑦|𝑋]
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A note on controls
Overall two reasons to include controls:

1. To ensure random allocation of the treatment

Necessary for identification

2. To improve precision

To better explain 𝑦: ↗  𝑅2 ( = 1 − 𝐹𝑈𝑉 )  and ↘  𝜎𝑢
2)

Adjusting for pre-treatment covariates may

Reduce the variation in 𝑦, increases precision 

Reduce the variation in 𝑥, decreases precision 

Do not adjust for post-treatment variables that may be affected by the treatment

Bad controls
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Simulating bad controls

Code Table

#reuse the parameters from above1
n <- 10000 #to limit sampling variation2
mu_b <- 33
sigma_b <- 14
gamma <- 55
kappa <- 46
sigma_a <- 27
delta <- 08

9
data_bad_control <- tibble(10
  x = rnorm(n, mu_x, sigma_x),11
  u = rnorm(n, 0, sigma_u),12
  b = rnorm(n, mu_b, sigma_b),13
  a = kappa*x + rnorm(n, 0, sigma_a),14
  y = alpha + beta*x + gamma*b + delta*a + u  15
)16

17
reg_short <-  lm(data = data_bad_control, y ~ x)18
reg_pre <- lm(data = data_bad_control, y ~ x + b)19
reg_post <- lm(data = data_bad_control, y ~ x + a)20
reg_pre_post <- lm(data = data_bad_control, y ~ x + b + a)21
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Analysis
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SEs: what are they?

Standard errors = estimate of sampling variability

Tell us how precise estimates are, how much ̂𝛽 would vary across repeated samples

They determine confidence intervals and p-values

An example will better illustrate
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Why care about them?

Violations of classical assumptions:

Heteroskedasticity: variance depends on 𝑋

Non-independence: errors correlated within groups

Implications:

t-tests and CIs misleading

In general, SEs too small ⇒  inference too optimistic
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(Non-)spherical errors

Under assumptions 1 →  3 we saw earlier, the asymptotic distribution of ̂𝛽
𝑂𝐿𝑆

 is

̂
𝛽
𝑂𝐿𝑆

𝑎∼𝒩(𝛽
0
, (𝑋′𝑋 )

−1
𝑋′𝛴𝑋 (𝑋′𝑋 )

−1 )

If spherical errors (ie 𝛴 = 𝜎2𝐼), use unbiased sample variance

If non-spherical errors, need a covariance matrix estimator that is consistent under this
misspecification

⇒  use sandwich estimators of the variance ( (𝑋′𝑋 )
−1

⏟
𝑏𝑟𝑒𝑎𝑑

𝑋′̂𝛴𝑋⏟
𝑚𝑒𝑎𝑡

(𝑋′𝑋 )
−1

⏟
𝑏𝑟𝑒𝑎𝑑

)

Heteroskedasticity: compute White SEs

Autocorrelation: compute Newey-West/Conley SEs if correlated in time/space
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Why clustering SEs
When errors are correlated within groups (e.g. individuals, firms, regions), clustering adjust for
this

𝔼[𝑢𝑖𝑢𝑗|𝑋] ≠ 0 for 𝑖, 𝑗 in the same cluster

Examples

Panel data: repeated measures of same unit

Group-level treatment, eg policy at regional level with many individuals per region

Intuition

We do not have 𝑁 independent observations but 𝐺 clusters

eg 10 classrooms of 30 students does not correspond to 300 independent observations

The real sample size is closer to the number of clusters, not observations
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What clustering does
Do not affect point estimates

Allows for intra-cluster correlation and adjusts the effective number of independent
observations

Increases SEs to reflect within-group dependence ⇒  wider CIs

̂Var𝐶𝑅(
̂
𝛽) = (𝑋′𝑋 )−1( 1

𝑛 − 𝑝
∑

𝑔 ∈ 𝐺

𝑋𝑔′𝑟𝑔𝑟𝑔′𝑋𝑔) (𝑋′𝑋 )−1

where 𝑋𝑔 and 𝑟𝑔 are data and residuals for cluster 𝑔

Intuition: each cluster provides one independent piece of information about how residuals co-
evolve with regressors
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Which level to cluster at?

Clustering accounts for correlation in residuals

⇒  the level of clustering depends on where correlation comes from

Rule of thumb:

Cluster at the level of the shock or treatment variation

If unsure, cluster higher rather than lower

If level of clustering too low, SEs too small, overconfidence in results

If level of clustering too large, SEs too large, under reject
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When is clustering difficult to implement?

When few clusters (eg < 30) ⇒  asymptotic results unreliable

When complex dependence or unclear correlation structure

When model residuals violate independence in unknown ways

Solution

Resampling methods (eg bootstrap)

Hierarchical clustering
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Bootstrap

Intuition: simulate the sampling variability by resampling from our data

Steps:

1. Draw samples (with replacement)

2. Estimate ̂𝛽 on each sample

3. Compute the SD of ̂𝛽 across replications

4. That SD = bootstrap SE

When resampling, respect the correlation structure: sample clusters
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Summaries
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Summary of today

Regression models and OLS estimation rest on a set of assumptions

Ensure estimates are unbiased, efficient, and statistically valid

When fail, estimates are biased and standard errors misleading

We reviewed these modelling assumptions and discuss what happens when they fail

Limited outcome models or clustering help overcome the issues
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Goal of the whole course

Give us a deeper understanding of:

How regression works “under the hood”: intuition

Causal identification strategies and their assumptions

How design, modeling, and analysis choices shape empirical results

Common pitfalls and challenges in empirical work

How to use simulations to explore estimator behavior and diagnose potential problems
specific to your own cases

Existing references and where to find additional information on a specific topic
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To mention when pitching your analysis

1. Research question

What causal effect of interest are you trying to estimate?

2. Ideal experiment

What ideal experiment would capture the causal effect?

3. Identification strategy

How are the observational data used to make comparisons that approximate such an
experiment?

4. Estimation method (including assumptions made when constructing standard errors)

5. Falsification tests that support the identifying assumptions
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To also mention in your pitch

Motivation

Why is your research question important?

Contributions to the literature

Methodological contributions

Internal validity

Are the identifying assumptions plausible?

Are there unexplained results?

External validity

Gap between policy questions and the analyses performed?

Generalization to other populations and settings?
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Summary of the entire course

Your research question and underlying theory are crucial

Think about what is the identifying variation in your model:

What are you estimating exactly with your model?

Which observations contribute to identification?

Always wonder what you are comparing

Use simulations to explore and understand points

Take away messages
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