n <- 1000
alpha <- 10
beta <- 2
mu_x <- 2
sigma_x <- 1
sigma_u <- 2
data_non_linear <- tibble(
x = rnorm(n, mu_x, sigma_x),
u = rnorm(n, 0, sigma_u),
y = alpha + beta*x^2 + u
)
reg_non_linear <- lm(y ~ x, data = data_non_linear)
# list("Non-linear" = reg_non_linear) |>
# modelsummary(gof_omit = "IC|Adj|F|RMSE|Log")