Lecture 4 - Identification: Fixed Effects

Topics in Econometrics

Vincent Bagilet

2025-09-24

Goal of the session

Outline of the course

- 1. Overview and fundamental hurdles
- 2. Simulations
- 3. Design: beyond identification
- 4. Design: identification (fixed effects and related)
- 5. Data visualization
- 6. Design: identification (IV and RDD)
- 7. Modelling
- 8. Analysis

Goal of the session

- Fixed effects are extremely common in applied economics
- What are they really doing?
- More generally, what are we really estimating in a specific model?
- What are we comparing to what?
- Where does the identifying variation come from?

Notes on Potential Outcomes

Potential outcomes framework

• Let's denote $D_i \in \{0,1\}$, the treatment status, Y_i , the realized outcome, Y^0 and Y^1 the potential outcomes

Individual Treatment Effects (TEs)	$Y_i^1 - Y_i^0, \forall i$	What we would ideally estimate
Average Treatment Effects (ATE)	$\mathbb{E}[Y_i^1 - Y_i^0]$	What we reasonably want to estimate
Average Treatment Effects on the Treated (ATT)	$\mathbb{E}[Y_i^1 - Y_i^0 D_i = 1]$	What we reasonably want to estimate
Difference in average observed outcomes	$\mathbb{E}[Y_i D_i=1] - \mathbb{E}[Y_i D_i=0]$	What we can estimate

SUTVA

- Stable unit treatment value assumption (SUTVA):
 - The potential outcome of one individual does not depend on the treatment status of other individuals
- Each unit has only 2 potential outcomes: Y_i^0, Y_i^1
- Assumes no spillover effects
- Assumes no general equilibrium effects
- Often not realistic in economics

Selection bias

$$\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0] =$$

Difference in average observed outcomes

$$\mathbb{E}[Y_i^1 - Y_i^0 | D_i = 1, X_i] + \mathbb{E}[Y_i^0 | D_i = 1, X_i] - \mathbb{E}[Y_i^0 | D_i = 0, X_i]$$

$$ATT$$
Selection Bias

- Goal: eliminate this selection bias to be able to say something about the quantity of interest (the ATT)
- ullet Selection bias: average difference in Y_i^0 between the treated and untreated
- Assumptions regarding the assignment mechanisms can help eliminate it

Assumed assignment mechanisms

- Random assignment (eg experiments)
 - \circ Treatment independent of potential outcomes \Rightarrow no selection bias in expectation
 - \circ It is the Independence Assumption (IA): $(Y_i^0,Y_i^1)\perp D_i$
- Selection on observables
 - $\circ~$ Random assignment conditional on some pre-treatment characteristic X
 - $\circ~$ It is the Conditional Independence Assumption (CIA): $(Y_0\,,Y_1)\,\perp\,D_{\,i}\,|X_{\,i}$
 - \circ Compare outcomes within each stratum of X_i
- Selection on unobservables
 - Need other identification strategies to eliminate selection bias
 - Will still assume some other independence assumptions

Identifying assumptions

- Can recover an unbiased estimator of a causal effect iff an identifying/independence assumption holds:
 - \circ IA: $(Y_i^0, Y_i^1) \perp D_i \Rightarrow$ can estimate the ATT
 - \circ No IA but CIA: $(Y_i^0, Y_i^1) \perp D_i | X_i \Rightarrow$ can estimate the ATT in each stratum
 - No CIA but \exists a relevant instrument Z_i that is an exogenous source of variation in D_i : $(Y_i^0, Y_i^1) \perp Z_i | X_i, \ Z_i \perp / D_i | X_i \Rightarrow \text{can estimate } a \text{ LATE}$
- We always need an identification strategy that convinces us that an IA holds

Summary

- Goal: identifying causal effects
- *ie* a difference between two potential outcomes
- But, we cannot observe them
- We only see the differences in observed outcomes
- If (C)IA holds, we can estimate an unbiased ATT
 - Randomized Control Trial (RCT), the gold standard
- But (C)IA rarely holds ⇒ need an identification strategy to elimate selection bias

Common identification methods

- Randomized experiments (RCT)
 - Randomization of treatment D
- Difference-in-differences (DiD), event studies, synthetic control methods (SCM)
 - Research designs that assume or construct parallel trends
- Instrumental variables (IV) or regression discontinuity (RD)
 - An instrument or discontinuity induces exogenous variation in treatment status
- Matching estimators:
 - Strategies solely based on matching are much less credible
 - But matching can complement natural or quasi-experimental design

Adjusting for non-varying factors

- Repeated observations over some dimension allow adjusting for all the unobserved characteristics that are constant across that dimension
- Transform each variable into its deviation from the group mean
- Only keep within variation (discards the between)
- Two approaches to do that:
 - Manual demeaning
 - Including fixed effects
- Basically build a counterfactual

Event studies, DiD, and TWFEs

- Objective: estimate the impact of some treatment at a certain time
- Leverages repeated observations, typically panel data
- Builds a counterfactual that can be explicit or more implicit (eg TWFE):
 - Unit's outcome had the event not occurred

Event study

- All units are treated
- Assumed counterfactual: group's past value
- Within variation only
- + Flexible, allows looking at whether effects are dynamic
- — Difficult to rule out other things changing at the same time
 - The rooster concluding the sun rises because of his crowing?

$$Y_{it} = \sum_{t=-K}^{\tau-2} [\beta_t \mathbb{1}\{t\}] + \beta_\tau \mathbb{1}\{\tau\} + \sum_{t=\tau+1}^{L} [\beta_t \mathbb{1}\{t\}] + e_{it}$$

DiD, DiDiD, TWFE

- Some units never get treated
- Assumed counterfactual: parallel trends of treated and untreated are parallel
- Within and between variation
- + Pre-trends not a problem (unlike event studies) as long as trends of the groups are parallel
- — Issues when go beyond simple binary DiD (we discuss that later)

$$Y_{it} = \beta G_i P_t + \lambda_G + \lambda_P + e_{it}$$

Nuts and bolts of fixed effects

Interpreting fixed effects

- Group FEs: compare individuals within the group
- Time FEs: compare individuals within a time period
- TWFEs:
 - Average of TEs identified from variation within group and variation within period
- Including FEs changes the estimand: we compare observation within a group or within a time period

Illustration of pooled estimate

Illustration of within state relationship

Regression as a projection

FIGURE 3.2. The N-dimensional geometry of least squares regression with two predictors. The outcome vector \mathbf{y} is orthogonally projected onto the hyperplane spanned by the input vectors \mathbf{x}_1 and \mathbf{x}_2 . The projection $\hat{\mathbf{y}}$ represents the vector of the least squares predictions

Frisch-Waugh-Lovell (FWL) Theorem

$$Y = X\beta + W\delta + U$$

• The estimate of β is the same as the estimate of β in:

$$Y^{\perp W} = X^{\perp W} \beta^{\tilde{}} + U^{\perp W}$$

- ullet where $.^{\perp W}$ denotes each variable where W has been residualized
- ie its projection onto the orthogonal space to W
- Obtained using:
 - The projection matrix $P_W = W(W'W)^{-1} W'$
 - \circ The residual-maker matrix $M_W = I P_W$
- $eg X^{\perp W} = M_W X$
- Fixed effects regression = regression on variables after partialling out the fixed effects

In practice

- To compute the partialled out version of a regression:
 - 1. Compute the residualized version of y and x: regress them on controls/FE
 - 2. Regress the **residuals** on one another
- Exercise. Using the data bellow, run two regressions and compare the estimates obtained:
 - 1. Regress l_murder on l_pris with state fixed effects
 - 2. Regress their residualized versions on one another (partialling out state FEs)

```
library(AER)
data("Guns")

guns <- Guns |>
    as_tibble() |>
    mutate(
    l_pris = log(prisoners),
    l_murder = log(murder)

)
```

Visualizing the raw data

Code

Graph levels Graph logs

```
1 graph levels <- guns |>
    ggplot(aes(x = prisoners, y = murder)) +
    geom point() +
    labs(
 4
     title = "Relationship between incarceration and murder rates",
      subtitle = "Variables in level: need to transform it",
    x = "Incarceration rate",
       v = "Murder rate"
 8
9
10
11 graph log <- guns |>
     qqplot(aes(x = l pris, y = l murder)) +
12
13
     geom point() +
     geom smooth(method = "lm") +
14
15
     labs(
      title = "Relationship between incarceration and murder rates",
16
      subtitle = "Log are better suited",
17
       x = "Log of incarceration rate",
18
       v = "Log of murder rate"
19
20
```

Equivalence residual vs manual demean

```
1 #demeaning and showing that equal to residuals
 2 sample_demean <- guns |>
     mutate(
       l_murder_res = feols(data = guns, fml = l_murder ~ 1 | state) |>
         residuals()
     ) |>
     group by(state) |>
     mutate(mean_l_murder = mean(l_murder)) |>
     ungroup() |>
    mutate(
10
11
     l_murder_demean = l_murder - mean_l_murder
12
     ) |>
13
     select(l_murder_res, l_murder_demean) |>
14
     head(10)
```

l_murder_res	l_murder_demean
0.2824963	0.2824963
0.2170183	0.2170183
0.2094711	0.2094711
0.2094711	0.2094711
0.1057927	0.1057927
-0.0098917	-0.0098917
-0.1515422	-0.1515422
-0.1300360	-0.1300360
-0.0883633	-0.0883633
-0.0582103	-0.0582103

Illustration of the FWL theorem

```
1 library(fixest)
 2
 3 #demeaning and showing that equal to residuals
 4 guns_demean <- guns |>
     mutate(
       l_murder_res = feols(data = guns, fml = l_murder ~ 1 | state) |>
        residuals(),
       l_pris_res = feols(data = guns, fml = l_pris ~ 1 | state) |>
         residuals()
 9
10
11
12 reg fe <- guns |>
13
    fixest::feols(fml = l murder ~ l pris | state) |>
14
     broom::tidy() |>
     mutate(reg = "fixed_effects", .before = 1)
15
16
17 reg res <- guns demean |>
    feols(fml = l murder res ~ l pris res - 1, cluster = "state") |>
18
19
     broom::tidy() |>
     mutate(reg = "residualized", .before = 1)
20
21
22 rbind(reg_fe, reg_res) |>
     kable()
```

reg	term	estimate	std.error	statistic	p.value
fixed_effects	l_pris	-0.15834	0.0365294	-4.334587	7.05e-05
residualized	l_pris_res	-0.15834	0.0365138	-4.336438	7.01e-05

Identifying variation

- When adding FE (or controlling in general), we partial out or absorb some of the variation
- We throw out variation
- Good if throw out variation that:
 - Is endogenous
 - Explains some of the variance of $y \left(\text{since } \bigvee_{\beta^{\hat{}}} = \frac{\sigma_u^2}{n\sigma_x^2} \right)$
- Bad if throw out identifying variation, ie variation that allows you to identify the effect of interest

ATE as a weighted average

- The estimate of the treatment coefficient is in fact a weighted average of individual treatment effects
 - See Aronow and Samii (2016) and Angrist and Pischke (2009) section 3.3.1)
- Weight: $w_i = (T_i \mathbb{E}[T_i | X_i])^2$
- The weight represents:
 - How well the controls explain the treatment status
 - \circ The conditional variance of the treatment, given X_i
- Actually equivalent to leverage in the residualized regression

Implications

- Observations whose treatment status is largely explained by covariates therefore contribute little, if at all, to estimation
- For FE: if for some groups there is little within variation, these groups do not contribute to identification
- Implications for external validity and representativity
- Implications for statistical power: the effective sample might be much smaller than the nominal sample

Effective sample vs nominal sample

Figure from Aronow and Samii (2016)

Identifying contributing observations

- Let's run some R code together to identify contributing observations in a simple linear regression with fixed effects
- We will use the gapminder dataset and regress lifeExp on log(gdpPercap)
- Let's consider several regressions, with various sets of fixed effects
- I will share with you some code you a

Exercise

Summary

- Today we reviewed:
 - The basis of the potential outcome framework
 - Identification strategies based on repeated observations
 - How fixed effects work, under the hood
 - Issues with TWFE
- Hopefully you have a better understanding of:
 - Causal inference, from a bird's view
 - How fixed effects really work
 - Many details and intuitions

Take away messages

- The choice of FE is crucial and affects the estimand
- FE can remove a lot of variation:
 - Great if removes endogenous variation
 - Problematic if there is too little variation left