Lecture 2 - Simulations for regression analysis

Topics in Econometrics

Vincent Bagilet

2025-09-16

Housekeeping

- Tomorrow's class moved to next week
- Graded assignment 1 due next week
- Reading: I will post the paper online. Due next Wednesday
- Replication exercise: format TBA

Take-away points from last week

- Applied economics aim to produce accurate causal estimates (eg inform public policy)
- Objective of the class: discuss practical issues that may prevent us from doing so
- Can arise in any of the steps of research: design, modeling and analysis
- There are some fundamental hurdles to estimating causal effects
- Simulations can help spot and understand these hurdles

Order of concern

- There are different type of hurdles
- Each type only matters to the extent that the previous one are addressed
- We need to have, in that order of concern:
 - 1. A good research question, grounded in theory
 - 2. A good identification strategy to avoid some fundamental hurdles (reverse causality, confounders, etc)
 - 3. A specification that allow us to estimate the quantity we want to estimate
 - 4. Avoided econometric hurdles

Simulations for regression analysis What, Why and How?

Lessons from last week's simulation

- What was the idea behind the implementation of simulations last week?
 - Objective: explore how several parameters affect the estimate of interest
 - Approach: Generate fake data (we thus know the whole DGP) and run an analysis
- Were they useful? If so, in what way?
 - Understand how various parameters affect the estimate of interest, without deriving the maths
 - Help to shape intuition and understanding

What is a simulation for regression analysis?

- A process in which we:
 - 1. Generate artificial data
 - 2. Run an analysis on this data
 - 3. Repeat the process many times
- We know the data generating process
- Can simulate data:
 - From scratch (fake data simulation) or
 - On top of an existing data set (real data simulation)

Overall principles

- Whole game in our metrics analyses: approximate the DGP
- With a simulation, we know the true DGP (at least to some extent)
- We can assess the performance of our analysis:
 - Can we accurately estimate the true effect of interest?
 - Are there hurdles to doing so and can we overcome them?

- To understand econometric concepts
- To design a study, before having the data
- To design a study, once having the data
- Tests and checks, after running the analysis
- As a rhetorical tool

To understand econometric concepts

- No maths required and allows to consider many general cases easily
- Useful to **get intuition** on how econometric aspects work
- Understand general concepts:
 - eg what happens in general when we omit a variable, or highlight issues with TWFE
 - \circ Can explore this with naive fake-data simulations (eg $x \sim \mathcal{N}(0,1)$)
- Understand conceptual hurdles specific to our context:
 - o eg what happens if there is autocorrelation in this particular variable
 - Can explore this with calibrated fake-data or real-data simulations

The example of leverage and influence

- What did you learn from the exercise you had to do?
- What affects leverage? How does it affect the parameter of interest?
- Present the intuition behind leverage and influence
- How did you implement your simulation?
- Any cool graphs/outputs?

To design a study, before having the data

- Useful to get started on a concrete reflection about:
 - The setting
 - What we want to estimate, exactly
 - The data need and its granularity
 - The identification strategy
- As a proof of concept (to apply for grants, data access, etc)

To design a study, once having the data

- Useful to think about:
 - Threats to identification and important assumptions
 - The statistical power of our study (difficult to do without a simulation)
- Explore where to best invest resources:
 - Larger sample
 - Improved data precision (reduce measurement error)

Tests and checks, after running the analysis

- Does your analysis detects the effect you are interested in, in a pristine setting?
- If the analysis faces issues in simulations, it will probably also in an actual setting
- What happens to the product of our analysis if the setting is slightly more complex?
- What happens if some hypotheses do not hold?
- All this can be discussed even after the analysis has been run

As a rhetorical tool

- Simplify what we are working on to the bare minimum
- What is the simplest way of pitching the analysis and the identification strategy?
- Can help build simple visualizations
- Can be useful to illustrate why a given approach does not work
 - To argue why we chose a certain approach
 - In a referee report

General approach to simulations

- Start with a simple DGP:
 - Simple correlation structure
 - Our model represents the actual DGP
- Does our analysis recover the effect in a rather "pristine" setting?
- Then complexify the DGP

Steps of the simulation approach

- 1. Define a DGP and the distribution of variables
- 2. Set parameters values
- 3. Generate a data set
- 4. Estimate the effect in the generated data set
- 5. Repeat many times
- 6. Compute the measure of interest

Next steps

- Change parameters values
 - Understand how the measure of interest is affected by a given parameter
 - \circ eg how does bias evolve with the correlation between x_1 and x_2 ?
- Complexify the DGP
 - Would our method still performs well if the DGP was more and more complex?
- Repeat

Exercise Simulating an RCT

Setting

- Impact of receiving extra lessons on students' grades
- Simulate an experiment (RCT):

$$orall i \in \{1,\ldots,n\}, \quad Grade_i = lpha_0 + eta_0 Treat_i + u_i$$

• Which sample size and proportion of treated to have a high probability of detecting the effect?

How?

- Simulate many experiments
- Compute the proportion of effects detected

Switch to Quarto document for coding

Thank you!