Lecture 1 - Overview and fundamental hurdles

Topics in Econometrics

Vincent Bagilet

2025-09-11

Introduction and Steps of Econometric Analyses

Objective of the class

- Discuss practical issues and challenges that one may face when doing applied economics:
 - Help you be aware of some of them
 - Provide you with some tools to be able to spot others by yourself
- These hurdles may arise at any step of the research process
- Topics class: will not cover everything but instead pick points within topics

Steps of Applied Economics Analyses

- Define question/topic
- Find, get, wrangle and clean data
- Summary statistics
- Define an identification strategy
- Build a regression model

- Estimate your model
- Specification checks
- Additional inference
- Robustness checks
- Communicate

A More Structured Version

- Design: decisions of data collection and measurement
 - eg, decisions related to sample size and ensuring exogeneity of the treatment
- Analysis: estimation and questions of statistical inference
 - eg standard errors, hypothesis tests, and estimator properties
- Modeling: define statistical models
 - In between design and analysis

Outline of the class

- 1. Overview and fundamental hurdles
- 2. Simulations
- 3. Design: beyond identification
- 4. Design: identification (Fixed Effects and related)
- 5. Data visualization
- 6. Design: identification (IV and RDD)
- 7. Modelling
- 8. Analysis

Research questions

What is a good research question?

- It can be answered
 - There is some sort of objective answer
- It should improve our understanding of the world
 - Should inform theory in some way
 - Takes us from theory to an hypothesis (statement about what we will observe in the world)
- A solid econometric analysis only matters to the extent that you have a good research question (but the opposite might be true as well)

Example

- Impact of the size of motors of boats in Norway and cod catch under a catch cap
- Not that interesting in itself, is it? Would be more interesting if, for instance:
 - Look at this from a game theory and forced technological adoption perspective
 - Find a way to use this case to say something new or different on management of renewable natural resources
- Can produce radically different papers on the same topic and setting
- Use theory to put light on your specific case and your specific case to inform theory

Identifying a research question

- Can start with a research question/hypothesis or from theory
- Or can find a natural experiment and come up with a question
- Know your literature to identify gaps
- We are interested in why and not what
- Avoid data mining: it can help but to identify questions to test on other data sets

Is your research question good?

- Relevance: is it interesting, important or policy relevant?
- Potential results: what would any result tell you about your theory?
- Feasibility: is the right data available?
- Scale: how much resources would you need?
- Research design: is there a good one that would allow you to answer your question?
- Keep it simple: avoid building several questions into one

Logistics

Website

Q TOPICS IN ECONOMETRICS Lectures ▼ Syllabus Resources **Topics in Econometrics** MSc Advanced Economics 2024-2025 - ENS Lyon This website gathers all the materials and information for the course Topics in Econometrics (ECO5106) of the MSc Advanced Economics (2024-2025) at the ENS Lyon.

https://vincentbagilet.github.io/metrics_m2/

A typical lecture

- 1. I introduce concepts and intuition
- 2. We discuss a paper together (when reading assigned)
- 3. Some R coding together *and* on your own

Grading and assignments

Assignment	Percentage of final grade	Due date
Final report	30 %	November 7, 8pm
Final presentation	20 %	November 4, 8:30am
Participation	10 %	-
Replication	20 %	October 13, 8pm
Homework	20 %	Throughout

Final project

- In pairs
- Build a simulation to replicate an analysis you may do in your master thesis
- Generate realistic fake-data, run your analysis and discuss your results
- Project proposal, short report, presentation

Structure of the final project

- Structure it as short research paper (pitch):
 - Quick motivation and context
 - Research question
 - Data section: describe how you generate your data. Start very simple, complexify later
 - Modeling and analysis: describe your model, your choices and the outputs of your regressions
 - Discussion: what did you learn with this exercise

Homeworks (due before lecture)

- 1. -
- 2. Non-graded assignment
- 3. -
- 4. Graded assignment + reading
- 5. Graded assignment
- 6. Graded project proposal + reading
- 7. Replication + reading
- 8. Graded assignment + reading

Fundamental hurdles

Typical pitfalls in economics research

- Spurious correlation
- Reverse causality
- Confounders

- Model miss-specification
- External validity
- Insufficient power

Spurious correlation

Viewership of "The Big Bang Theory"

correlates with

Google searches for 'how to make baby'

- Average viewership of "The Big Bang Theory" by season · Source: Wikipedia
- Relative volume of Google searches for 'how to make baby' (Worldwide), with quotes) · Source: Google Trends

2008-2019, r=0.983, r2=0.965, p<0.01 · tylervigen.com/spurious/correlation/1402

Reverse causality

https://forms.gle/tHcTYqaKPeDTAUn56

Model miss-specification

Examples of more subtle hurdles

- Bad controls
- Leverage and outliers
- Measurement error
- Clustering level
- How do identification strategies actually work (eg FE and TWFE)
- More complex identification strategies (eg, shift-share)

Avoiding hurdles

Learn, understand metrics and applied research

The Barque of Dante by Manet, after a painting by Delacroix

Replication, a helpful learning tool

Derive the maths

- Sometimes relatively straightforward and very illuminating
- ullet eg drivers of the variance of your estimator: $\mathbb{V}_{\hat{eta}}=rac{\sigma_u^2}{n\sigma_x^2}$
- Deriving the maths can be more complex and time consuming

Simulations can help

- Super easy to implement simple simulations
- Can be informative of what does not work
- Can help you identify where the issue comes from
- We will discuss that with an example in a second

Implement checks

- Check if the model seems to represent the DGP
- Check if our identification hypotheses seem to hold
- Check if the hypotheses for estimation seem to hold

Look at the consequences if this does not hold

- Robustness checks
- Evaluate the design retrospectively

Objectives for this class

- Build a mindful mindset
- Help you be aware of some of them
- Provide you with some tools to be able to spot others by yourself
- Learn how to implement simulations

Simulations

Usefulness through an example

A simple example: OVB

- How does an omitted variable affect our point estimate of interest? Why?
- Under which condition is an omitted variable an issue
- How does it affect the point estimate? The s.e.?
- How does that vary with various parameters? eg correlation between variable (sign and magnitude)
- Start very simple and complexify the process
- Let's move to R

Lecture summary

What did we do today?

- Discussed the structure of applied econometric research and where we may encounter hurdles
- Discussed logistics
- Reviewed some of these common hurdles encountered in applied research
- How to implement a simple simulation to understand the impact of an omitted variable

What did you learned, liked, disliked?

Thank you!