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Summary: Linear regressions with period and group fixed effects are widely used to estimate 
policies’ effects: 26 of the 100 most cited papers published by the American Economic Re vie w 

from 2015 to 2019 estimate such regressions. It has recently been shown that those regressions 
may produce misleading estimates if the policy’s effect is heterogeneous between groups or 
o v er time, as is often the case. This surv e y re vie ws a fast-gro wing literature that documents this 
issue and that proposes alternative estimators robust to heterogeneous effects. We use those 
alternative estimators to revisit Wolfers ( 2006a ). 
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1. INTRODUCTION 

 popular method to estimate the effect of a policy or treatment on an outcome is to compare
 v er time groups experiencing different evolutions of their exposure to treatment. In practice,
his idea is implemented by regressing Y g,t , the outcome in group g and at period t , on group
xed effects, period fixed effects, and D g,t , the treatment of group g at period t . For instance,

o measure the effect of the minimum wage on employment in the US, researchers have often
egressed employment in county g and year t on county fixed effects, year fixed effects, and the
inimum wage in county g and year t . 
Such tw o-w ay fix ed effects (TWFE) re gressions are probably the most commonly used tech-

ique in economics to measure the effect of a treatment on an outcome. de Chaisemartin
nd D’Haultfœuille ( 2021a ) conducted a surv e y of the twenty papers with the most Google
cholar citations published by the American Economic Re vie w in 2015, and of the simi-

arly selected papers in 2016, 2017, 2018, and 2019. Of those 100 papers, 26 have estimated
t least one TWFE regression to estimate the effect of a treatment on an outcome. TWFE
egressions are also very commonly used in political science, sociology, and environmental
ciences. 

Researchers have long thought that TWFE estimators are equi v alent to differences-in-
ifferences (DID) estimators. With two groups and two periods, a DID estimator compares the
utcome evolution from period 1 to 2 between a treatment group s that switches from untreated
The Author(s) 2022. Published by Oxford University Press on behalf of Royal Economic Society. All rights reserv ed. F or permissions, 
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to treated, and a control group n that is untreated at both dates: 

DID = Y s, 2 − Y s, 1 −
(
Y n, 2 − Y n, 1 

)
. (1.1) 

DID relies on a parallel trends assumption: in the absence of the treatment, both groups would
hav e e xperienced the same outcome e volution. Specifically, for e very g ∈ { s, n } and t ∈ { 1 , 2 } ,
let Y g,t (0) and Y g,t (1) denote the potential outcomes in group g at period t without and with
the treatment, respectively. 1 Parallel trends requires that the expected evolution of the untreated
outcome be the same in both groups: 

E 

[
Y s, 2 (0) − Y s, 1 (0) 

] = E 

[
Y n, 2 (0) − Y n, 1 (0) 

]
. 

Under that assumption, DID is unbiased for the average treatment effect (ATE) in group s at
period 2 (see, e.g., Abadie, 2005 ): 

E [ DID ] = E 

[
Y s, 2 − Y s, 1 − ( Y n, 2 − Y n, 1 ) 

]
= E 

[
Y s, 2 (1) − Y s, 1 (0) − ( Y n, 2 (0) − Y n, 1 (0)) 

]
= E 

[
Y s, 2 (1) − Y s, 2 (0) 

] + E 

[
Y s, 2 (0) − Y s, 1 (0) 

] − E 

[
Y n, 2 (0) − Y n, 1 (0) 

]
= E 

[
Y s, 2 (1) − Y s, 2 (0) 

]
, (1.2) 

where the last equality follows from the parallel trends assumption. Parallel trends is partly
testable, by comparing the outcome trends of groups s and n , before group s received the
treatment. In practice, such pre-trends tests sometimes fail, but other times they indicate that the
two groups were indeed on parallel paths before s got treated. 2 

Moti v ated by the fact that, in the two-groups and two-periods design described abo v e, DID
is equal to the treatment coefficient in a TWFE re gression, researchers hav e also estimated
TWFE regressions in more complicated designs with many groups and periods, variation in
treatment timing, treatments switching on and off, and/or nonbinary treatments. Recent research
has shown that in those more complicated designs, TWFE estimators are unbiased for an ATE if
parallel trends hold and if another assumption is satisfied: the treatment effect should be constant,
between groups and o v er time. Unlike parallel trends, this assumption is unlikely to hold, even
approximately, in most of the applications where TWFE regressions have been used. For instance,
the effect of the minimum wage on employment is likely to differ in counties with highly educated
w ork ers and in counties with less educated w ork ers. 

The realization that one of the most commonly used empirical methods in social science relies
on an often implausible assumption has spurred a flurry of methodological papers diagnosing
the seriousness of the issue, and proposing alternative estimators. This review aims to provide
an o v ervie w of this recent literature, which has de veloped in such a quick and dynamic manner
that some practitioners may have become lost in the whirlwind of new working papers. We start
by giving an o v erview of the papers that have identified TWFE regressions’ lack of robustness
to heterogeneous treatment effects, and that have proposed diagnostic tools practitioners may
use to assess the seriousness of this issue. We then give an overview of the papers that have
1 Implicitly, this notation rules out dynamic treatment effects, and assumes that groups’ potential outcomes only depend 
on their current treatment, not on their past treatments. This restriction is not of essence to derive equation ( 1.2 ) below, 
but it is of essence for some of the other results we co v er, as noted later in the paper. We relax it in Section 3.2. 

2 Pre-trends tests come with caveats unveiled by a recent literature, see Bilinski and Hatfield ( 2018 ), Kahn-Lang and 
Lang ( 2020 ), and Roth ( 2021 ). Similarly, recent papers have proposed relaxations of the parallel trends assumption (see, 
e.g., Manski and Pepper, 2018 ; Fre yaldenho v en et al., 2019 ; Rambachan and Roth, 2019 ). Though we allude to it in 
Section 3.2 , this literature is mostly beyond the scope of this survey. See Roth et al. ( 2022 ) for a re vie w. 

© The Author(s) 2023. 
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roposed alternative estimators robust to heterogeneous treatment effects. Finally, we revisit
olfers ( 2006a ), a famous TWFE application, in light of the recent literature discussed in this

urv e y. As a word of caution, note that this literature is very recent, so several of the papers we
e vie w are still working papers, which have not been through the peer-re vie w process yet. 

Table 2 in the conclusion summarizes the heterogeneity-robust estimators available to applied
esearchers, depending on their research design. When available, the Stata and R commands im-
lementing the diagnostics tools and alternative estimators discussed in this re vie w are referenced,
nd the basic syntax of the Stata command is provided. We refer the reader to the command’s
elp files for further details on their syntax. Finally, the Stata code for our re-analysis of Wolfers
 2006a ), where several of the estimators discussed in this survey are computed, is available on
he journal’s website. 

2. TWFE REGRESSIONS WITH HETEROGENEOUS TREATMENT EFFECTS 

2.1. TWFE r egr essions may not identify a convex combination of tr eatment effects 

e consider a panel of G groups observed at T periods, respectiv ely inde x ed by the placeholders
and t , which can refer to any group or time period. Typically, groups are geographical entities

athering many observations, but a group could also just be a single individual or firm. Let ̂  βf e

enote the coefficient of D g,t , the treatment in group g at period t in an OLS regression of Y g,t 

he outcome of group g at period t , on group fixed effects, period fixed effects, and D g,t : 

Y g,t = ̂  αg + ̂  γt + ̂

 βf e D g,t + εg,t , (2.1)

here εg,t denotes the regression residual. We assume that the regression is unweighted, but it is
ometimes weighted by N g,t , the population of group g at period t . The results discussed below
lso apply to this weighted regression, see de Chaisemartin and D’Haultfœuille ( 2020 ). 3 

de Chaisemartin and D’Haultfœuille ( 2020 ) show that under a parallel trends assumption on
he potential outcome without treatment Y g,t (0) , 

E 

[̂ βf e 

] = E 

⎡ ⎣ 

∑ 

( g,t): D g,t �= 0 

W g,t TE g,t 

⎤ ⎦ . (2.2)

f the treatment is binary, TE g,t = Y g,t (1) − Y g,t (0) , the ATE in group g at time t . If the treatment
s discrete or continuous, TE g,t = ( Y g,t ( D g,t ) − Y g,t (0)) /D g,t , the effect of moving the treatment
rom 0 to D g,t scaled by D g,t . 4 The W g,t are weights summing to 1 that are proportional to and
f the same sign as 

D g,t − D g,. − D .,t + D .,. , (2.3)
3 The regression could also be estimated using more disaggregated outcome data. For instance, groups may be US 
ounties, and one may estimate the regression using indi vidual-le vel outcome measures, assigning group membership 
ased on county of residence. This disaggre gated re gression is equi v alent to the aggregated regression in ( 2.1 ), provided 
 g,t is defined as the average outcome of individuals in cell ( g, t) , and the aggregated regression is weighted by the number 
f individuals in cell ( g, t) . Accordingly, the results below also apply to disaggregated regressions, see de Chaisemartin 
nd D’Haultfœuille ( 2020 ). 

4 de Chaisemartin and D’Haultfœuille ( 2020 ) derive equation ( 2.2 ) assuming that groups’ potential outcomes only 
epend on their current treatment, not on their past treatments. With dynamic effects, equation ( 2.2 ) still holds if the 
reatment is binary and staggered, except that some of the TE g,t s become effects of having been treated for more than 
ne period. 

The Author(s) 2023. 
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where D g,. is the average treatment of group g across periods, D .,t is the average treatment at
period t across groups, and D .,. is the average treatment across groups and periods. 

Equations ( 2.2 ) and ( 2.3 ) have two important consequences. First, W g,t is in general not equal
to one divided by the number of treated ( g, t) cells, so ̂

 βf e may be biased for the average treatment
effect across those cells, the ATT. A special case where W g,t is equal to one divided by the number
of treated ( g, t) cells, and where ̂  βf e is therefore unbiased for the ATT, is when (i) the design is
staggered, meaning that groups’ treatments can only increase o v er time and can change at most
once; 5 (ii) the treatment is binary; and (iii) there is no variation in treatment timing: all treated
groups start receiving the treatment at the same date. However, conditions (i)–(iii) are seldom
met in practice. ̂  βf e can also be unbiased for the ATT if one is ready to make more assumptions
than just parallel trends. For instance, if one is also ready to assume that D g,t − D g,. − D .,t + D .,. 

is uncorrelated with TE g,t , the treatment effects that are up- and down-weighted by ̂

 βf e do not
systematically differ, and one can then show that ̂  βf e is unbiased for the ATT (see corollary 2 in
de Chaisemartin and D’Haultfœuille, 2020 ). 6 Unfortunately, this no-correlation condition is often
implausible. To see this, note that D g,t − D g,. − D .,t + D .,. is decreasing in D g,. , meaning that ̂  βf e 

downweights the treatment effect of groups with the highest average treatment from period 1 to T .
Ho we ver, groups with the largest and lowest average treatment may have systematically different
treatment effects. Similarly, D g,t − D g,. − D .,t + D .,. is decreasing in D .,t , and the treatment
effects at time periods with the highest average treatment may also systematically differ from
the treatment effects at time periods where the average treatment is lower. In staggered adoption
designs, D .,t is increasing in t so the weights are decreasing in t . If the treatment effect is
also monotonically increasing or decreasing in t , this no-correlation condition will fail. This
no-correlation condition is partly testable if one observes a proxy variable P g,t that is likely to be
correlated with TE g,t . Then, one can just test if D g,t − D g,. − D .,t + D .,. is correlated with P g,t . 

Second, and perhaps more worryingly, equation ( 2.3 ) implies that some of the weights W g,t 

may be ne gativ e. This means that in the minimum wage example, ̂ βf e could be estimating
something like three times the effect of the minimum wage on employment in Santa Clara
county, minus two times the effect in Wayne county. Then, if raising the minimum wage by one
dollar decreases employment by 5% in Santa Clara county and by 20% in Wayne county, one
would have E 

[̂ βf e 

] = 3 × −0 . 05 − (2 × −0 . 2) = 0 . 25 . E 

[̂ βf e 

]
would be positive, while the

minimum wage’s effect on employment is ne gativ e both in Santa Clara and in Wayne county.
This example shows that ̂ βf e may not satisfy the ‘no-sign reversal property’: E 

[̂ βf e 

]
could,

for instance, be positi ve e ven if the treatment effect is strictly ne gativ e in every ( g, t) . This
phenomenon can only arise when some of the weights W g,t are ne gativ e: when all those weights
are positive, ̂  βf e does satisfy the no-sign reversal property. Note that despite its intuitive appeal
and its popularity among applied researchers, the no-sign reversal property is not grounded in
statistical decision theory, unlike other commonly-used criteria to discriminate estimators such
as the mean-squared error. Still, it is connected to the economic concept of P areto efficienc y. If
an estimator satisfies ‘no-sign-reversal’, the estimand attached to it can only be positive if the
treatment is not Pareto-dominated by the absence of treatment, meaning that not everybody is
hurt by the treatment. Conversely, the estimand can only be negative if the treatment does not
5 Together, (i) and (ii) imply that groups can only switch from untreated to treated, and may do so at different points 
in time. This is probably the definition of a staggered design many people have in mind. (i) extends the definition of a 
staggered design to nonbinary treatments. 

6 A special case of this ‘no-correlation’ condition is if the treatment effect is constant, i.e., TE g,t = δ for all ( g, t) . 
Then, it directly follows from equation ( 2.2 ) that E 

[̂ βf e 

] = δ. However, constant effect is most often an implausible 
assumption. 

© The Author(s) 2023. 
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areto-dominate the absence of treatment. On the other hand, if an estimator does not satisfy
no-sign-reversal’, the estimand attached to it could, for instance, be positive even if the treatment
s Pareto-dominated. 

Inasmuch as ‘no-sign-reversal’ is a desirable property, it becomes interesting to understand
hen ̂

 βf e may satisfy it. Equation ( 2.3 ) shows that, with a binary treatment, the weights attached
o ̂

 βf e could all be positive. With a binary treatment, all the ( g, t) s entering the summation in
 2.2 ) must have D g,t = 1 , so for a weight W g,t to be strictly ne gativ e, one must hav e 1 + D .,. <

 g,. + D .,t . This cannot happen if D g,. + D .,t ≤ 1 for every ( g, t) . Accordingly, all the weights
re likely to be positive when there is no group that is treated most of the time, and no time
eriods where most groups are treated. In staggered designs, this has led Jakiela ( 2021 ) to
ropose dropping the last periods of the data, those when D .,t is the highest, to mitigate or
liminate the ne gativ e weights. One could also drop the al w ays-treated groups, if there are any. 

On the other hand, equation ( 2.3 ) shows that with a nonbinary treatment, it becomes more likely
hat some of the weights W g,t are ne gativ e. Gentzkow et al. ( 2011 ) study the effect of the number
f newspapers in county g and year t on turnout in presidential elections. Assume that in year t ,
ounty g has one newspaper ( D g,t = 1 ), which is below its average number of newspapers across
ears, equal, say, to two ( D g,. = 2 ). At the same time, the average number of newspapers across
ounties in year t is equal to two ( D .,t = 2 ), which is abo v e the average number of newspapers
cross all counties and years, equal, say, to one ( D .,. = 1 ). Then, it follows from ( 2.3 ) that the
eight assigned to the effect of newspapers in county g and year t is strictly ne gativ e. More
enerally, a necessary condition to have that all weights are positive is that in every period where
he population’s treatment is higher than its average across periods ( D .,t ≥ D .,. ), the treatment of
ach treated group must also be larger than its average across periods ( D g,t ≥ D g,. for all gs such
hat D g,t �= 0 ). This condition is likely to often fail. 

The twowayfeweights Stata (see de Chaisemartin et al., 2019 ) and R (see Zhang and de
haisemartin, 2021 ) commands compute the weights W g,t in ( 2.2 ). The basic syntax of the Stata
ommand is: 

twowayfeweights outcome groupid timeid treatment, type(feTR) 

A decomposition similar to ( 2.2 ) can be obtained for TWFE regressions with control variables,
nd for ̂  βf d , the treatment’s coefficient in a regression of the outcome’s first difference on the
reatment’s first difference and period fixed effects. de Chaisemartin and D’Haultfœuille ( 2020 )
lso derive decompositions similar to ( 2.2 ), for ̂  βf e and ̂

 βf d , under common trends and under
he assumption that the treatment effect does not change o v er time. The weights in all those
ecompositions are also computed by the twowayfeweights Stata and R commands. 

de Chaisemartin and D’Haultfœuille ( 2020 ) use the twowayfeweights Stata command to
e visit Gentzko w et al. ( 2011 ). The authors regress the change in turnout in county g between two
lections on the change of the county’s number of newspapers and state-year fixed effects. They
nd that ̂  βf d = 0 . 0026 (s.e. = 0 . 0009 ): one more newspaper increases turnout by 0.26 percentage
oints. Using the twowayfeweights Stata package, de Chaisemartin and D’Haultfœuille
 2020 ) find that under parallel trends, ̂  βf d estimates a weighted sum of the effects of newspapers
n turnout in 10,077 county × election cells, where 5,472 effects are weighted positively while
,605 are weighted ne gativ ely, and where ne gativ e weights sum to −1.43. Accordingly, ̂  βf d is
ar from estimating a conv e x combination of effects. The weights are ne gativ ely correlated with
he election year: ̂  βf d is more likely to upweight newspapers’ effects in early elections, and to
ownweight or weight ne gativ ely newspapers’ effects in late elections. This may lead ̂

 βf d to be
The Author(s) 2023. 
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biased if ne wspapers’ ef fects change o v er time. Similar results apply to ̂

 βf e : more than half of
the weights attached to that coefficient are ne gativ e, and ne gativ e weights sum to −0.53. 

The decomposition in ( 2.2 ) is the main result in de Chaisemartin and D’Haultfœuille ( 2020 ).
Related results have appeared earlier in Theorems S1 and S2 of the supplementary material of
de Chaisemartin and D’Haultfœuille ( 2015 ). Borusyak and Jaravel ( 2017 ) consider the case with
a binary and staggered treatment. In their Lemma 1 and Proposition 1, they assume that the
treatment effect varies with the duration elapsed since one has started receiving the treatment, but
does not vary across groups and o v er time. Then they show that ̂  βf e estimates a weighted sum
of effects that may assign ne gativ e weights to long-run treatment effects. Their Appendix C also
contains another result related to that in equation ( 2.2 ). 7 

2.2. The origin of the problem: ‘forbidden comparisons’ 

2.2.1. Forbidden comparisons when the treatment is binary and the design is sta g g ered.
Goodman-Bacon ( 2021 ) shows that when the treatment is binary and the design is staggered,
meaning that groups can switch in, but not out of treatment, we have ̂ βf e = 

∑ 

g �= g ′ ,t <t ′ 
v g ,g ′ ,t,t ′ DID g ,g ′ ,t,t ′ , (2.4) 

where DID g ,g ′ ,t,t ′ is a DID comparing the outcome evolution of two groups g and g 

′ from a pre
period t to a post period t ′ , and where v g ,g ′ ,t,t ′ are nonne gativ e weights summing to one, with
v g ,g ′ ,t,t ′ > 0 if and only if g switches treatment between t and t ′ while g 

′ does not. 8 Some of
the DID g ,g ′ ,t,t ′ s in equation ( 2.4 ) compare a group switching treatment from t to t ′ to a group
untreated at both dates, while other DID g ,g ′ ,t,t ′ s compare a switching group to a group treated at
both dates. The ne gativ e weights in ( 2.2 ) originate from this second type of DIDs. 

To see that, let us consider a simple example, first introduced by Borusyak and Jaravel ( 2017 ), 9 

with two groups and three periods. Group e, the early-treated group, is untreated at period 1 and
treated at periods 2 and 3. Group � , the late-treated group, is untreated at periods 1 and 2 and
treated at period 3. In this example, equation ( 2.4 ) reduces to ̂ βf e = ( DID e,�, 1 , 2 + DID �,e, 2 , 3 ) / 2 , (2.5) 

with 

DID e,�, 1 , 2 = Y e, 2 − Y e, 1 −
(
Y �, 2 − Y �, 1 

)
, 

DID �,e, 2 , 3 = Y �, 3 − Y �, 2 −
(
Y e, 3 − Y e, 2 

)
. 

DID e,�, 1 , 2 compares the period-1-to-2 outcome evolution of group e, that switches from untreated
to treated from period 1 to 2, to the outcome evolution of group � , that is untreated at both periods.
DID e,�, 1 , 2 is similar to the DID estimator in equation ( 1.1 ), and under parallel trends it is unbiased
for the treatment effect in group e at period 2: 

E 

[
DID e,�, 1 , 2 

] = E 

[
TE e, 2 

]
. (2.6) 
7 Prior to that, Chernozhukov et al. ( 2013 ) had shown that one-way FE regressions may be biased for the average 
treatment effect, although, unlike TWFE regressions, they al w ays estimate a convex combination of effects. 

8 Goodman-Bacon ( 2021 ) actually decomposes ̂  βf e as a weighted average of DIDs between cohorts of groups becoming 
treated at the same date, and between periods of time where their treatment remains constant. One can then further 
decompose his decomposition, as we do here. 

9 Borusyak and Jaravel ( 2017 ) have also coined the ‘forbidden comparisons’ expression we borrow here. 

© The Author(s) 2023. 
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Figure 1. A numerical example with three periods, an early and a late treated group. 
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ID �,e, 2 , 3 , on the other hand, compares the period-2-to-3 outcome evolution of group � , that
witches from untreated to treated from period 2 to 3, to the outcome evolution of group e, that
s treated at both dates. At both periods, e’s outcome is its treated potential outcome, which is
qual to the sum of its untreated outcome and its treatment effect. Accordingly, 

Y e, 3 − Y e, 2 = Y e, 3 (0) + TE e, 3 − ( Y e, 2 (0) + TE e, 2 ) . 

n the other hand, group � is only treated at period 3, so 

Y �, 3 − Y �, 2 = Y �, 3 (0) + TE �, 3 − Y �, 2 (0) . 

aking the expectation of the difference between the two previous equations, 

E 

[
DID �,e, 2 , 3 

] = E 

[
TE �, 3 − TE e, 3 + TE e, 2 

]
, (2.7)

here E 

[
Y e, 3 (0) − Y e, 2 (0) 

]
and E 

[
Y �, 3 (0) − Y �, 2 (0) 

]
cancel out under the parallel trends assump-

ion. Finally, it follows from equations ( 2.5 ), ( 2.6 ), and ( 2.7 ) that 

E 

[̂ βf e 

] = E 

[
1 / 2 TE �, 3 + TE e, 2 − 1 / 2 TE e, 3 

]
. (2.8)

n this simple example, equation ( 2.2 ) reduces to ( 2.8 ). The right-hand side of equation ( 2.8 ) is a
eighted sum of three ATEs where one ATE receives a negative weight. As the previous derivation

ho ws, this negati ve weight comes from the fact ̂ βf e leverages DID �,e, 2 , 3 , a DID comparing a
roup switching from untreated to treated to a group treated at both periods. 

To make things more concrete, Figure 1 shows the actual and counterfactual outcome evolution,
n a numerical example with three periods and an early and a late treated group. All treatment
f fects are positi ve: the actual outcomes, on the solid lines, are al w ays abo v e the counterfactual
utcomes on the dashed lines. Ho we v er, ̂  βf e is ne gativ e. ̂  βf e is the simple average of the DID
omparing the early- to the late-treated group from period 1 to 2, which is positive, and of the
ID comparing the late- to the early-treated group from period 2 to 3, which is ne gativ e, and

arger in absolute value than the first DID. The reason why the second DID is ne gativ e is that
he treatment effect of the early-treated group increases substantially from period 2 to 3, so this
roup’s outcome increases more than that of the late-treated group. 
The Author(s) 2023. 
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If one is ready to assume that the treatment effect does not change o v er time, TE e, 3 = TE e, 2 ,
and ( 2.7 ) simplifies to 

E 

[
DID �,e, 2 , 3 

] = E 

[
TE �, 3 

]
. 

Then, the ne gativ e weight in ( 2.7 ) disappears and ̂

 βf e estimates a weighted average of treatment
effects. This e xtends be yond this simple e xample: Theorem S2 of the web appendix of de
Chaisemartin and D’Haultfœuille ( 2020 ) and equation (16) of Goodman-Bacon ( 2021 ), show
that in staggered adoption designs with a binary treatment, ̂  βf e estimates a conv e x combination
of effects if the treatment effect does not change o v er time, but may still vary across groups. This
conclusion, ho we ver, no longer holds if the treatment is not binary or the design is not staggered.
Moreo v er, assuming constant treatment effects o v er time is often implausible as this rules out
both dynamic treatment effects and calendar time effects. 

The decomposition in equation ( 2.4 ) is key to understand why ̂

 βf e may not identify a conv e x
combination of treatment effects. On the other hand, it cannot be used to assess if ̂  βf e does indeed
estimate a conv e x combination of effects in a given application. Consider an example similar to
that abo v e, but with a third group n that remains untreated from period 1 to 3. In this second
example, the decomposition in ( 2.4 ) now indicates that ̂ βf e assigns a weight equal to 1/6 to
DIDs comparing a switcher to a group treated at both periods. On the other hand, all the weights
in ( 2.2 ) are positive in this second example. This phenomenon can also arise in real data sets.
In the data of Stevenson and Wolfers ( 2006 ), used by Goodman-Bacon ( 2021 ) in his empirical
application, if one restricts the sample to states that are not al w ays treated and to the first ten years
of the panel, all the weights in ( 2.2 ) are positive, but the sum of the weights in ( 2.4 ) on DIDs
comparing a switcher to a group treated at both periods is equal to 0.06. Beyond these examples,
one can show that having DIDs comparing a switcher to a group treated at both periods in ( 2.4 ) is
necessary, but not sufficient to have negative weights in ( 2.2 ). Similarly, the sum of the weights
on DIDs comparing a switcher to a group treated at both periods in ( 2.4 ) is al w ays larger than
the absolute value of the sum of the ne gativ e weights in ( 2.2 ). The reason why equation ( 2.4 )
‘o v erestimates’ the ne gativ e weights in ( 2.2 ) is that as soon as there are three distinct treatment
dates, there is not a unique way of decomposing ̂

 βf e as a weighted average of DIDs, and there
exist other decompositions than equation ( 2.4 ) putting less weight on DIDs using a group treated
at both periods as the control group. 10 

The bacondecomp Stata (see Goodman-Bacon et al., 2019 ) and R (see Flack and Edward,
2020 ) commands compute the DID g ,g ′ ,t,t ′ s entering in ( 2.4 ), the weights assigned to them, as
10 To see that, let t 0 < t 1 < t 2 be three dates, let e be an early-treated group becoming treated at t 1 , let � be a late-treated 
group becoming treated at t 2 , and let n be a group untreated yet at t 2 . Let v = min ( v �,e,t 1 ,t 2 , v e,n,t 0 ,t 2 ) > 0 . One has 

DID �,e,t 1 ,t 2 = DID �,n,t 0 ,t 2 − DID e,n,t 0 ,t 2 + DID e,�,t 0 ,t 1 . (2.9) 

Then, it follows from equation ( 2.9 ) that 

v �,e,t 1 ,t 2 DID �,e,t 1 ,t 2 + v e,n,t 0 ,t 2 DID e,n,t 0 ,t 2 = ( v �,e,t 1 ,t 2 − v ) DID �,e,t 1 ,t 2 + v DID �,n,t 0 ,t 2 

+ v DID e,�,t 0 ,t 1 + ( v e,n,t 0 ,t 2 − v ) DID e,n,t 0 ,t 2 . (2.10) 

Plugging equation ( 2.10 ) into equation ( 2.4 ) will yield a different decomposition of ̂  βf e as a weighted average of DIDs, 
but the weight on DIDs using a group treated at both periods as the control group is equal to v �,e,t 1 ,t 2 in the left-hand 
side of equation ( 2.10 ), and to ( v �,e,t 1 ,t 2 − v ) in its right-hand side. Accordingly, this new decomposition puts strictly less 
weight than equation ( 2.4 ) on DIDs using a group treated at both periods as the control group. 

© The Author(s) 2023. 
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ber 2025
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ell as the sum of the weights on DID g ,g ′ ,t,t ′ s using a group treated at both periods as the control
roup. The basic syntax of the bacondecomp Stata command is: 

bacondecomp outcome treatment, ddetail 

.2.2. ‘Forbidden comparisons’ when the design is not sta g g er ed or tr eatment is not binary.
hen the treatment is not staggered or when it is not binary, ̂  βf e may leverage another type of

omparison: it may compare the outcome evolution of a group m whose treatment increases more
o the outcome evolution of a group � whose treatment increases less. In fact, with two groups m
nd � and two periods, one can show that 

̂ βf e = 

Y m, 2 − Y m, 1 −
(
Y �, 2 − Y �, 1 

)
D m, 2 − D m, 1 −

(
D �, 2 − D �, 1 

) , 

here the right-hand side of the previous display is the Wald-DID estimator studied by de
haisemartin and D’Haultfœuille ( 2018 ). The Wald-DID compares the outcome evolution of
roups m and � , and scales that comparison by the differential evolution of m ’s and � ’s treatments.
e Chaisemartin and D’Haultfœuille ( 2018 ) show that the Wald-DID may not estimate a conv e x
ombination of effects, unless the treatment effect is constant o v er time and is the same in groups
 and � . This second requirement was not present in the binary and staggered case. In that case,
e have seen before that, if the treatment effect is constant over time, ̂  βf e estimates a convex

ombination of effects even if the treatment effect varies between groups. 
To see that, with a nonbinary or nonstaggered treatment, ̂ βf e may not estimate a conv e x

ombination of ef fects, e ven if the treatment ef fect is constant o v er time, let us consider a simple
xample. Assume that group m goes from 0 to 2 units of treatment from period 1 to 2, while group
 goes from 0 to 1 unit. Then, the denominator of the Wald-DID is equal to 2 − 0 − (1 − 0) = 1 ,
o ̂ βf e = Y m, 2 − Y m, 1 −

(
Y �, 2 − Y �, 1 

)
. 

o simplify, let us also assume that in both groups potential outcomes are linear in the number of
reatment units, with slopes that are constant o v er time, but may differ for groups m and � : 

Y m,t ( d) = Y m,t (0) + δm 

d 

Y �,t ( d) = Y m,t (0) + δ� d. 

hen, under parallel trends, 

E 

[̂ βf e 

] = E 

[
Y m, 2 (2) − Y m, 1 (0) − (

Y �, 2 (1) − Y �, 1 (0) 
)]

= E 

[
Y m, 2 (0) + 2 δm 

− Y m, 1 (0) − (
Y �, 2 (0) + δ� − Y �, 1 (0) 

)]
= E 

[
Y m, 2 (0) − Y m, 1 (0) 

] − E 

[
Y �, 2 (0) − Y �, 1 (0) 

] + 2 δm 

− δ� 

= 2 δm 

− δ� , 

 weighted sum of m and � ’s treatment effects, where group � ’s effect is weighted ne gativ ely.
ntuitively, group � is also treated at period 2, and ̂

 βf e , which uses � as a control group, subtracts its
reatment effect out. This example also shows that ̂  βf e may fail to identify a conv e x combination
f ef fects, e ven without v ariation in treatment timing: here, both m and � start getting treated at
eriod 2. 
The Author(s) 2023. 
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Figure 2. A numerical example with two periods, a more- and a less-treated group. 
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To make things more concrete, Figure 2 shows the actual and counterfactual outcome evolution,
in a numerical example with two periods, a group whose treatment increases more, from 0 to
2 units, and a group whose treatment increases less, from 0 to 1 unit. All treatment effects are
positive: the actual outcomes, on the solid lines, are al w ays abo v e the counterfactual outcomes
on the dashed lines. Ho we ver, ̂ βf e , which is equal to the DID comparing the more- and the
less-treated groups from period 1 to 2, is ne gativ e. The reason why this DID is ne gativ e is that
the treatment effect, per treatment unit, of the less-treated group is more than twice as large
than the treatment effect of the more-treated group. Accordingly, the outcome of the less-treated
group increases more, despite the fact that this group receives a twice smaller treatment dose in
period 2. 

2.3. Decomposition results for other TWFE regression coefficients 

2.3.1. Dynamic TWFE r egr essions. In staggered designs with a binary treatment, Sun and
Abraham ( 2021 ) consider event-study regressions: 

Y g,t = ̂  γg + ̂

 λt + 

L ∑ 

� =−K,� �=−1 ̂

 β� 1 { F g = t − � } + ε g,t , (2.11) 

where F g is the first period at which group g is treated. In other words, the outcome is regressed
on group and period fixed effects, and relative-time indicators 1 { F g = t − � } equal 1 if group g

started receiving the treatment � periods ago. For � ≥ 0 , ̂  β� is supposed to estimate the cumulative
effect of � + 1 treatment periods. For � ≤ −2 , ̂  β� is supposed to be a placebo coefficient testing
the parallel trends assumption, by comparing the outcome trends of groups that will and will not
start receiving the treatment in | � | periods. Researchers have sometimes estimated a variant of this
regression, where the first and last indicators 1 { F g = t + K} and 1 { F g = t − L } are respectively
replaced by an indicator for being at least K periods away from adoption ( 1 { F g ≥ t + K} ), and
an indicator for having adopted at least L periods ago ( 1 { F g ≤ t − L } ). Such endpoint binning
is for instance recommended by Schmidheiny and Siegloch ( 2020 ): without it, the regression
implicitly assumes that the treatment no longer has any effect after L periods. Instead, with
© The Author(s) 2023. 
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ndpoint binning the regression assumes that the treatment effect is constant after L periods, a
ore plausible assumption. 
Sun and Abraham ( 2021 ) show that under parallel trends, for � ≥ 0 , 

E 

[̂ β� 

] = E 

⎡ ⎣ 

∑ 

g 

w g,� TE g ( � ) + 

∑ 

� ′ �= � 

∑ 

g 

w g,� ′ TE g ( � 
′ ) 

⎤ ⎦ , (2.12)

here TE g ( � ) is the cumulative effect of � + 1 treatment periods in group g, and w g,� and w g,� ′ are
eights such that 

∑ 

g w g,� = 1 and 

∑ 

g w g,� ′ = 0 for every � ′ . 11 The first summation in the right-
and side of equation ( 2.12 ) is a weighted sum across groups of the cumulative effect of � + 1
reatment periods, with weights summing to 1, but that may be ne gativ e. This first summation
esembles that in the decomposition of the ‘static’ TWFE coefficient in ( 2.2 ), and it implies that
 

� may be biased if the cumulative effect of � + 1 treatment periods varies across groups. The
econd summation is a weighted sum, across � ′ �= � and groups, of the cumulative effect of � ′ + 1
reatment periods in group g, with weights summing to 0. This second summation was not present
n the decomposition of the static TWFE coefficient. Importantly, its presence implies that ̂  β� ,
hich is supposed to estimate the cumulative effect of � + 1 treatment periods, may in fact be

ontaminated by the effects of � ′ + 1 treatment periods. As 
∑ 

g w g,� ′ = 0 for every � ′ , this second
ummation disappears if TE g ( � ′ ) does not vary across groups, but it is often implausible that the
reatment effect does not vary across groups. 

For � ≤ −2 , and without assuming parallel trends, Sun and Abraham ( 2021 ) show that ̂ β�

stimates the sum of two terms. As intended, the first term measures deviations from parallel
rends between groups that will and will not start receiving the treatment in | � | periods. But
he second term is similar to the second summation in the right-hand side of equation ( 2.12 ): a
eighted sum, across � ′ ≥ 0 and groups, of the cumulati ve ef fect of � ′ + 1 treatment periods in
roup g, with weights summing to zero. Due to the presence of this second term, the expectation
f ̂  β� may differ from zero even if parallel trends holds, and it may be equal to zero even if parallel
rends fails. Thus, an important consequence of the results in Sun and Abraham ( 2021 ) is that, in
he presence of heterogeneous treatment effects, ( 2.11 ) cannot be used to test for parallel trends.

The eventstudyweights Stata command (see Sun, 2020 ) computes the weights attached
o event-study regressions. Its basic syntax is: 

eventstudyweights { rel time list } , absorb(i.groupid i.timeid) 

ohort(first treatment) rel time(ry), 

here rel time list is the list of relative-time indicators 1 { F g = t − � } included in ( 2.11 ),
irst treatment is a variable equal to the period when group g got treated for the first

ime, and ry is a variable equal to timeid minus first treatment , the number of periods
lapsed since group g started receiving the treatment. 

Ev ent-study re gressions can only be used in staggered designs with a binary treatment. In
ore complicated designs, where the treatment is not binary or a group’s treatment can increase

r decrease multiple times, some researchers have estimated TWFE regressions of the outcome
n the treatment and its first K lags, the so-called distributed-lag regression. Other researchers
ave estimated a panel-data version of the local-projection method proposed by Jord ̀a ( 2005 )
11 Equation ( 2.12 ) follows from Proposition 3 in Sun and Abraham ( 2021 ), assuming no binning and that the treatment 
oes not have an effect after L + 1 periods of exposure. A slight difference is that the decomposition in Sun and Abraham 

 2021 ) gathers groups that started receiving the treatment at the same period into cohorts. Their decomposition can then 
e further decomposed, as we do here. 

The Author(s) 2023. 
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for time-series data: Y g,t+ � is regressed on group and period FEs and D g,t , for � ∈ { 0 , . . . , K} .
de Chaisemartin and D’Haultfœuille ( 2021a ) show that those regressions suffer from similar
issues as the ev ent-study re gression: under parallel trends, the distributed-lag and local-projection
regressions may produce biased estimates of the treatment’s instantaneous and dynamic effects
if effects are heterogeneous across groups and o v er time. In particular, the y do not satisfy the
no-sign reversal property: one could have that the treatment’s instantaneous and dynamic effects
are positive in every ( g, t) cell, but the expectations of those regression coefficients are negative.
de Chaisemartin and D’Haultfœuille ( 2021a ) also show that the panel-data version of the local-
projection method may yield biased estimates even if effects are homogeneous. 

2.3.2. TWFE r egr essions with more than one treatment. Another case of interest is TWFE
regressions with several treatments. For instance, to estimate separately the effect of medical and
recreational marijuana laws on consumption, one may regress marijuana consumption in state g
and year t on state and year fixed effects, on whether state g has a recreational marijuana law in
year t , and on whether state g has a medical law in year t . de Chaisemartin and D’Haultfœuille
( 2021b ) show that in those regressions, the coefficient on a given treatment identifies a weighted
sum of that treatment’s effect across ( g, t) s, with weights summing to 1, but that may be ne gativ e,
plus weighted sums of the effects of the other treatments in the regression, with weights summing
to 0. In the example above, the coefficient on recreational laws may be contaminated by the effect
of medical laws. The weights attached to TWFE regressions with several treatments are also
computed by the twowayfeweights Stata and R commands. 

3. ALTERNA TIVE HETEROGENEITY -ROBUST DID ESTIMATORS 

In this section, we re vie w se veral recently-proposed alternati v es to TWFE re gressions. We restrict
our attention to estimators relying on parallel trends assumptions, like TWFE regressions, but
that do not restrict treatment effect heterogeneity between groups and o v er time, unlike TWFE
re gressions. This e xcludes papers that hav e assumed randomized treatment timing (see, e.g.,
Athey and Imbens, 2022 ; Roth and Sant’Anna, 2021 ) or sequential treatment randomization
(see, e.g., Bojinov et al., 2021 ), rather than parallel trends. Intuitively, all the estimators below
carefully choose valid control groups to a v oid making the ‘forbidden comparisons’ that render
TWFE estimators nonrobust to heterogeneous treatment effects. We start by reviewing estimators
ruling out dynamic effects, i.e., that assume that a group’s current outcome only depends on its
current treatment, before re vie wing estimators that allo w dynamic ef fects. In complicated designs,
say with a continuous treatment that changes often, allowing for dynamic effects comes with a
number of costs: it may result in imprecise estimators, and may complicate the interpretation
of the estimated effects. Then, one may want to carefully e v aluate if past treatments are indeed
likely to affect the current outcome. 

3.1. Estimators ruling out dynamic effects 

With a binary treatment, de Chaisemartin and D’Haultfœuille ( 2020 ) propose to use the DID M 

estimator. With two time periods, DID M 

is merely a weighted average of 

DID + 

= 

1 

N 0 , 1 

∑ 

g: D g, 1 = 0 ,D g, 2 = 1 

( Y g, 2 − Y g, 1 ) − 1 

N 0 , 0 

∑ 

g: D g, 1 = 0 ,D g, 2 = 0 

( Y g, 2 − Y g, 1 ) , 
© The Author(s) 2023. 
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nd of 

DID − = 

1 

N 1 , 1 

∑ 

g: D g, 1 = 1 ,D g, 2 = 1 

( Y g, 2 − Y g, 1 ) − 1 

N 1 , 0 

∑ 

g: D g, 1 = 1 ,D g, 2 = 0 

( Y g, 2 − Y g, 1 ) , 

here for all ( d 1 , d 2 ) ∈ { 0 , 1 } 2 , N d 1 ,d 2 denotes the number of groups such that D g, 1 = d 1 and
 g, 2 = d 2 . 12 DID + 

is a DID comparing the period-1-to-2 outcome evolution of groups going
rom untreated to treated, the ‘switchers in’, and of groups untreated at both dates. It is similar to
he DID estimator in equation ( 1.1 ), and it is unbiased for the treatment effect of the switching-in
roups at period 2, under a parallel trends assumption on the untreated outcome Y g,t (0) . DID −
s a DID comparing the period-1-to-2 outcome evolution of groups treated at both dates, and
f groups going from treated to untreated, the ‘switchers out’. DID − is also similar to the DID
stimator in equation ( 1.1 ), switching ‘treatment’ and ‘nontreatment’. Then, one can show that
ID − is unbiased for the treatment effect of the switching-out groups at period 2, under a parallel

rends assumption on the treated outcome Y g,t (1) . 
The DID M 

estimator can easily be extended to applications with more than two time periods.
or each pair of consecutive time periods, one can compute a DID + ,t estimator comparing
roups going from untreated to treated from t − 1 to t to groups untreated at both dates, and
 DID −,t estimator comparing groups treated at t − 1 and t to groups going from treated to
ntreated from t − 1 to t . Then, one averages the DID + ,t and DID −,t estimators across t . de
haisemartin and D’Haultfœuille ( 2020 ) show that the resulting estimator is unbiased for the
verage treatment effect across all switching ( g, t) cells, namely cells such that D g,t �= D g,t−1 .
hey also propose placebo estimators to test the parallel trends assumptions underlying DID M 

.
he placebos compare the outcome trends of switchers and nonswitchers, before the switchers
witch. 

With more than two time periods, the DID M 

estimator may be biased if the treatment has
ynamic effects. For instance, to infer the counterfactual trend that groups going from untreated
o treated from t − 1 to t would have experienced without that switch, DID + ,t uses as controls
ll groups untreated at t − 1 and t . Ho we ver, some of those groups may have been treated, say, at
 − 2 . If the treatment has dynamic effects, this past treatment may affect their period t − 1 -to- t
utcome evolution, thus making them potentially invalid controls. Note that if the treatment is
inary and staggered, such situations cannot arise: groups untreated at t − 1 and t have been
ntreated all along. Accordingly, DID M 

is robust to dynamic effects in binary and staggered
esigns. 

The DID M 

estimator can easily be extended to nonbinary treatments taking a finite num-
er of values. Then, it is a weighted average, across d and t , of DIDs comparing the t − 1
o t outcome evolution of groups whose treatment goes from d to some other value from
 − 1 to t , and of groups with a treatment equal to d at both dates, normalized by the inten-
ity of the treatment change experienced by the switchers. For instance, in Gentzkow et al.
 2011 ), a county going from two to four newspapers is compared to a county with two news-
apers at both dates. The multi-period DID estimator in Imai and Kim ( 2021 ) is related to the
ID M 

estimator. It can be used with a binary treatment, to estimate the switcher-in’s treatment
ffect. 
12 Implicitly, this definition of DID + and DID − assumes that all groups have the same sizes. The DID M 

estimator can 
asily be extended to instances where groups have heterogeneous sizes, see de Chaisemartin and D’Haultfœuille ( 2020 ). 

The Author(s) 2023. 
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The DID M 

estimator is computed by the did multiplegt Stata (see de Chaisemartin et al.,
2019 ) and R (see Zhang and de Chaisemartin, 2020 ) commands. The basic syntax of the Stata
command is: 

did multiplegt outcome groupid timeid treatment 

de Chaisemartin and D’Haultfœuille ( 2020 ) compute the DID M 

estimator in the Gentzkow
et al. ( 2011 ) example mentioned above that studies the effect of newspapers on turnout in US
presidential elections. de Chaisemartin and D’Haultfœuille ( 2020 ) find that DID M 

= 0 . 0043
(s.e. = 0 . 0014 ), meaning that one more newspaper increases turnout by 0.43 percentage point.
DID M 

is 66% larger than, and significantly different from, ̂ βf d , the estimator reported by
Gentzkow et al. ( 2011 ). 

de Chaisemartin et al. ( 2022 ) extend the DID M 

estimator to continuous treatments. To simplify,
we present their estimators in the case with two time periods, although they readily extend to the
case with more periods. de Chaisemartin et al. ( 2022 ) assume that from period one to two, the
treatment of some units, hereafter referred to as the mo v ers, changes. The y also assume that the
treatment of other units, hereafter referred to as the stayers, does not change. This assumption
is likely to be met when the treatment is, say, trade tarif fs: tarif f’s reforms rarely apply to all
products, so it is likely that tariffs of at least some products stay constant o v er time. On the other
hand, this assumption is unlikely to be met when the treatment is, say, precipitations: geographical
units never experience the exact same precipitations over two consecutive years. 

Under the assumption that there are some stayers, the estimator proposed by de Chaisemartin
et al. ( 2022 ) compares the outcome evolution of mo v ers and stayers, with the same period-one
treatment. With a continuous treatment, such comparisons can either be achieved by reweighting
stayers by propensity score weights, or by adjusting mo v ers’ outcome change using a nonpara-
metric regression of the outcome change on the period-one treatment among the stayers. Under
parallel trends assumptions, the corresponding estimands identify a weighted average of the ef-
fect, across all mo v ers, of mo ving their treatment from its period-one to its period-two value,
scaled by the difference between these two values. This effect is a weighted average of the slopes
of mo v er’s potential outcome function, between their period-one and period-two treatments. 

The estimators in de Chaisemartin et al. ( 2022 ) can be extended to the case where there are
no stayers, provided there are quasi-stayers, meaning units whose treatment barely changes from
period one to two. Alternatively, one could also use the estimator proposed by Graham and
Powell ( 2012 ), which compares the outcome evolution of mo v ers and quasi-stayers, but without
conditioning on unit’s period-one treatment. Their estimator relies on a linear treatment effect
assumption, unlike those in de Chaisemartin et al. ( 2022 ). When there are no true stayers, both
estimators require choosing a bandwidth, namely the lowest treatment change below which a unit
can be considered as a quasi-stayer. Neither de Chaisemartin et al. ( 2022 ) or Graham and Powell
( 2012 ) derive an ‘optimal’ bandwidth, so for now bandwidth choice is left to the discretion of
the researcher. If the data has at least three periods, one could also use the correlated-random-
coefficient estimator proposed by Chamberlain ( 1992 ). While it allows for some treatment effect
heterogeneity, that estimator relies on a linear treatment effect assumption, like the estimator in
Graham and Powell ( 2012 ). 

de Chaisemartin et al. ( 2022 ) show that after some relabelling, some of their estimators are
equi v alent or nearly equi v alent to estimators that had been previously proposed by de Chaisemartin
and D’Haultfœuille ( 2018 ), Abadie ( 2005 ), and Callaway and Sant’Anna ( 2021 ). This implies
that their estimators can be computed, up to small tweaks, by the companion software for those
© The Author(s) 2023. 
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apers. We refer the reader to de Chaisemartin et al. ( 2022 ) for a precise description of how their
stimators can be computed using existing software. 

3.2. Estimators allowing for dynamic effects when the treatment is binary and the design is 
sta g g ered 

 or an y t ∈ { 1 , . . . , T } , let 0 t (resp. 1 t ) denote a vector of t zeros (resp. ones). With dynamic
ffects, group g’s outcome at time t is allowed to depend on her past treatments. For any
 d 1 , . . . , d t ) , let Y g,t ( d 1 , . . . , d t ) denote group g’s potential outcome at period t with treatments
 d 1 , . . . , d t ) from period 1 to t . 13 In particular, Y g,t ( 0 t ) is group g’s outcome without ever being
reated from period 1 to t . With dynamic effects, Callaway and Sant’Anna ( 2021 ) and Sun and
braham ( 2021 ) have proposed to replace the parallel trends assumption on Y g,t (0) by a parallel

rends assumption on Y g,t ( 0 t ) : for all g �= g 

′ and t ≥ 2 , 

E 

[
Y g,t ( 0 t ) − Y g,t−1 ( 0 t−1 ) 

] = E 

[
Y g ′ ,t ( 0 t ) − Y g ′ ,t−1 ( 0 t−1 ) 

]
. (3.1)

e now review the estimators proposed by Callaway and Sant’Anna ( 2021 ), Sun and Abraham
 2021 ), and Borusyak et al. ( 2021 ) for binary and staggered treatments, under the parallel trends
ssumption in equation ( 3.1 ). 

.2.1. The estimators proposed by Callaway and Sant’Anna ( 2021 ). In a staggered adoption
esign, groups can be aggregated into cohorts that start receiving the treatment at the same
eriod. For all c and t , and for all � ∈ { 0 , . . . , t} let Y c,t denote the average outcome at period t

cross groups belonging to cohort c, and let Y n,t denote the average outcome at period t across
roups that remain untreated from period 1 to T , hereafter referred to as the never-treated groups,
ssuming for now that such groups e xist. Calla way and Sant’Anna ( 2021 ) define their parameters
f interest as 

TE c ,c + � = E 

[
Y c ,c + � ( 0 c−1 , 1 � + 1 ) − Y c ,c + � ( 0 c+ � ) 

]
, 

he average effect of having been treated for � + 1 periods in the cohort that started receiving the
reatment at period c, for every c ∈ { 2 , . . . , T } and � ≥ 0 such that � + c ≤ T . To estimate, say,
E c,c , Callaway and Sant’Anna ( 2021 ) propose 

DID c, 0 = Y c,c − Y c ,c −1 −
(
Y n,c − Y n,c−1 

)
, 

 DID estimator comparing the period c − 1 -to- c outcome evolution in cohort c and in the
ever-treated groups n . DID c, 0 is unbiased for TE c,c : 

E 

[
Y c,c − Y c ,c −1 −

(
Y n,c − Y n,c−1 

)]
= E 

[
Y c,c ( 0 c−1 , 1) − Y c ,c −1 ( 0 c−1 ) −

(
Y n,c ( 0 c ) − Y n,c−1 ( 0 c−1 ) 

)]
= E 

[
Y c,c ( 0 c−1 , 1) − Y c,c ( 0 c ) 

]
+ E 

[
Y c,c ( 0 c ) − Y c ,c −1 ( 0 c−1 ) −

(
Y n,c ( 0 c ) − Y n,c−1 ( 0 c−1 ) 

)]
= E 

[
Y c,c ( 0 c−1 , 1) − Y c,c ( 0 c ) 

]
, 
13 This notation implicitly rules out anticipation effects: the outcome cannot depend on a group’s future treatments. 

The Author(s) 2023. 
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where the last equality follows from equation ( 3.1 ). More generally, to estimate TE c ,c + � , Callaway
and Sant’Anna ( 2021 ) propose 

DID c,� = Y c ,c + � − Y c ,c −1 −
(
Y n,c+ � − Y n,c−1 

)
, 

a DID estimator comparing the period- c − 1 -to- c + � outcome evolution in cohort c and in the
never-treated groups n . 

Callaway and Sant’Anna ( 2021 ) extend those baseline estimators in various directions. First,
they propose more aggregated estimators, such as DID � , a weighted average of the DID c,� 

estimators across all cohorts reaching � periods after their first treatment before the end of the
panel. Second, they propose estimators similar to those above, but that use the not-yet-treated
instead of the never-treated as controls. For instance, all groups not yet treated at period c can be
used as control groups in the definition of DID c, 0 . This is very useful when there is no never-treated
group: in that case, the effects TE c ,c + � can still be estimated, for every c ≥ 2 and � ≥ 0 such that
� + c ≤ U , where U is the last period when at least one group is still untreated. Even when there
are never-treated groups, one may worry that such groups are less comparable to groups that
get treated at some point, and researchers sometimes prefer to discard them and only leverage
variation in treatment timing. Finally, even when one is fine with keeping the never-treated groups,
the not-yet-treated is a larger control group, and may lead to more precise estimators. Note that
in staggered adoption designs with a binary treatment, the DID M 

estimator proposed by de
Chaisemartin and D’Haultfœuille ( 2020 ) also uses the not-yet-treated as controls, and is identical
to the DID 0 estimator of the instantaneous treatment effect using the not-yet-treated as controls in
Callaway and Sant’Anna ( 2021 ). Third, Callaway and Sant’Anna ( 2021 ) also propose estimators
relying on a conditional parallel trends assumption. F ourth, the y suggest placebo estimators to
test the parallel trends assumptions underlying their estimators. These placebos are robust to
heterogeneous effects, unlike the coefficients ̂  β� for � ≤ −2 from the event-study regression in
( 2.11 ). 

The estimators proposed by Callaway and Sant’Anna ( 2021 ) are computed by the csdid
Stata command (see Rios-Avila et al., 2021 ), and by the did R command (see Sant’Anna and
Callaway, 2021 ). The basic syntax of the Stata command is 

csdid outcome, time(timeid) gvar(cohort) 

where cohort is equal to the period when a group starts receiving the treatment. 

3.2.2. The estimators proposed by Sun and Abraham ( 2021 ). Sun and Abraham ( 2021 ) also
propose DID estimators of the cohort-and-period specific effects TE c ,c + � that only rely on the
parallel trends assumption in equation ( 3.1 ), and that are robust to heterogeneous treatment effects.
Their estimators either use the never-treated groups as controls, or the last-treated groups if there
are no never-treated. With the former control group, their estimators of the TE c ,c + � parameters
are identical to those proposed by Callaway and Sant’Anna ( 2021 ) with the same control group.
Operationally, they show that their estimators can be computed via a simple linear regression,
which may reduce computing time. Unlike Callaway and Sant’Anna ( 2021 ), they do not propose
estimators relying on a conditional parallel trends assumption, and they also do not propose
estimators using the not-yet-treated as controls. 
© The Author(s) 2023. 
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Their estimators are computed by the eventstudyinteract Stata command (see Sun,
021 ). Its basic syntax is 

eventstudyinteract outcome { rel time list } , absorb(i.groupid 

.timeid) cohort(first treatment) control cohort(controlgroup) 

here rel time list is the list of relative-time indicators 1 { F g = t − � } one would include
n the ev ent-study re gression in ( 2.11 ), first treatment is a variable equal to the period
hen group g got treated for the first time, and controlgroup is an indicator for the control
roup observations (e.g., the never treated). 

.2.3. The estimators proposed by Borusyak et al. ( 2021 ), Gardner ( 2021 ), and Liu et al. ( 2021 ).
orusyak et al. ( 2021 ), Gardner ( 2021 ), and Liu et al. ( 2021 ) have proposed estimators that may
e more efficient than those in Callaway and Sant’Anna ( 2021 ) and Sun and Abraham ( 2021 ),
nder some assumptions. We start by re vie wing Borusyak et al. ( 2021 ), before discussing the
onnection between their results and those in Gardner ( 2021 ) and Liu et al. ( 2021 ). The estimators
n Borusyak et al. ( 2021 ) can be obtained by running a TWFE regression of the outcome on group
nd time fixed effects, and fixed effects for every treated ( g, t) cell. To be concrete, if the data
as 50 groups, 10 time periods, and 100 treated ( g, t) cells, the regression has a constant and 158
xed effects (49 for groups, 9 for time periods, and 100 for the treated ( g, t) cells). Under the
ssumptions of the Gauss-Markov theorem, the coefficients from this regression are the linear
stimators of the population coefficients with the lowest variance. But under parallel trends, the
opulation coefficient on the fixed effect for treated cell ( g, t) is actually equal to TE g,t , the ATE in
ell ( g, t) , so the estimators in Borusyak et al. ( 2021 ) are the linear estimators of those ATEs with
he lowest variance. With estimators of TE g,t in hand, one can estimate TE c ,c + � as the average of
ll the TE g,t s such that group g started receiving the treatment at period c and t = c + � . Again,
auss-Markov ensures that this estimator is the best linear estimator of TE c ,c + � . As the estimators

n Callaway and Sant’Anna ( 2021 ) and Sun and Abraham ( 2021 ) are also linear estimators, those
n Borusyak et al. ( 2021 ) have a lower variance. 

A second, numerically equi v alent way of computing the estimators in Borusyak et al. ( 2021 )
mounts to fitting a regression of the outcome on group and time fixed effects in the sample of
ntreated observations, and using that regression to predict the counterfactual outcome of treated
bservations. Estimates of the treatment effect of those observations are then merely obtained by
ubstracting their counterfactual to their actual outcome. This imputation method is computation-
lly faster than the first. It also readily generalizes to more complicated specifications, such as
riple-differences, or models allowing for group-specific linear trends. Using this representation
f their estimator, Borusyak et al. ( 2021 ) show that it can also be used to estimate the effect
f a binary and nonstaggered treatment, if that treatment does not have dynamic effects. This
mputation method is the one used by the did imputation Stata command (see Borusyak,
021 ) and by the didimputation R command (see Butts, 2021 ) to compute the estimators
roposed by Borusyak et al. ( 2021 ). The basic syntax of the Stata command is: 
did imputation outcome groupid timeid first treatment , 

here first treatment is a variable equal to the period when group g first got treated. 
Before Borusyak et al. ( 2021 ), Liu et al. ( 2021 ), and Gardner ( 2021 ) proposed the same

mputation method as in Borusyak et al. ( 2021 ), 14 but the result showing that the resulting
14 Even before that, Gobillon and Magnac ( 2016 ) have proposed a similar strategy to estimate treatment effects under 
 factor model. 

The Author(s) 2023. 
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estimators are efficient under the assumptions of the Gauss-Markov theorem only appears in
Borusyak et al. ( 2021 ). Note that Wooldridge ( 2021 ) has also proposed an estimation strategy
connected, and in some cases numerically equi v alent, to that of Borusyak et al. ( 2021 ). 

3.2.4. Understanding the differences between those estimators. Under parallel trends, the es-
timators in Borusyak et al. ( 2021 ) may offer precision gains with respect to those in Callaway
and Sant’Anna ( 2021 ) or Sun and Abraham ( 2021 ), under the assumptions of the Gauss-Markov
theorem. Those require, among other things, that the never-treated potential outcomes Y g,t ( 0 t ) be
independent of each other, both across groups and o v er time. It is, of course, often implausible that
the potential outcomes of the same group are uncorrelated o v er time. With serial correlation, it is
no longer guaranteed that the estimators in Borusyak et al. ( 2021 ) will al w ays be more efficient
than those in Callaway and Sant’Anna ( 2021 ) and Sun and Abraham ( 2021 ), but simulations
in Borusyak et al. ( 2021 ) suggest that one can still expect efficiency gains with moderate serial
correlation. 

If trends are not exactly parallel, the estimators in Borusyak et al. ( 2021 ) may be more or less
biased than those in Callaway and Sant’Anna ( 2021 ) or Sun and Abraham ( 2021 ), depending on
the nature of the violation of parallel trends. Borusyak et al. ( 2021 ) do not provide a closed-form
of their estimators, but one can show that with only one treated group s, which starts to receive
the treatment at period t s , their estimator of that group’s treatment effect at t s + � is 

Y s,t s + � − 1 

t s − 1 

t s −1 ∑ 

k= 1 

Y s,k − 1 

G − 1 

∑ 

g �= s 

( 

Y g,t s + � − 1 

t s − 1 

t s −1 ∑ 

k= 1 

Y g,k 

) 

, (3.2) 

while the estimator in Callaway and Sant’Anna ( 2021 ) and Sun and Abraham ( 2021 ) is 

Y s,t s + � − Y s,t s −1 − 1 

G − 1 

∑ 

g �= s 

(
Y g,t s + � − Y g,t s −1 

)
. (3.3) 

Equation ( 3.3 ) shows that the estimator in Callaway and Sant’Anna ( 2021 ) and Sun and Abraham
( 2021 ) use groups’ t s − 1 outcome, the last period before s gets treated, as the baseline outcome,
while equation ( 3.2 ) shows that the estimator in Borusyak et al. ( 2021 ) instead uses the average
outcome from period 1 to t s − 1 as the baseline. This is why the latter estimator is often more
precise. Ho we ver, it is also more biased, when parallel trends does not exactly hold and the
discrepancy between groups’ trends gets larger over longer horizons, as would for instance
happen when there are group-specific linear trends. In such instances, Roth ( 2021 ) notes that
leveraging earlier pre-treatment periods increases the bias of a DID estimator, since one makes
comparisons from earlier periods. If, on the other hand, parallel trends fails due to anticipation
effects arising a few periods before t s , equations ( 3.2 ) and ( 3.3 ) imply that the estimator in
Borusyak et al. ( 2021 ) is less biased than that in Callaway and Sant’Anna ( 2021 ) and Sun and
Abraham ( 2021 ). Ho we ver, these two types of violations of parallel trends may not be equally
problematic. Often, both estimators can be immunized against anticipation effects, by redefining
t s as the date when the treatment was announced. On the other hand, it is often harder to immunize
them against differential trends widening o v er time (see de Chaisemartin and D’Haultfœuille,
2021a , for further discussion). Beyond the simple example we consider here, deriving a closed-
form expression of the estimators in Borusyak et al. ( 2021 ) is not straightforward. Whether the
conclusions we derive in this simple example carry through to more complicated designs is thus
an open question. 
© The Author(s) 2023. 
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If one views parallel trends as a reasonable first-order approximation rather than an assumption
hat holds exactly, it may make sense to investigate how sensitive one’s findings are to violations
f parallel trends. To do so, one may for instance implement the partial identification approach
n Manski and Pepper ( 2018 ) or Rambachan and Roth ( 2019 ). The latter approach assumes that
arallel trends do not hold exactly, and that the magnitude of placebo estimators is informative as
o the magnitude of the bias in the actual estimators caused by differential trends. The estimators
roposed by Callaway and Sant’Anna ( 2021 ) and Sun and Abraham ( 2021 ) may be more amenable
o the approach in Rambachan and Roth ( 2019 ) than the estimators proposed by Borusyak et al.
 2021 ). Consider again the same simple example as abo v e. F or an y � ≤ t s − 2 , one can construct
he following placebo estimator: 

Y s,t s −1 − Y s,t s −� −2 − 1 

G − 1 

∑ 

g �= s 

(
Y g,t s −1 − Y g,t s −� −2 

)
. 

his placebo compares the treated and control groups’ outcome evolution, from period t s − � − 2
o t s − 1 , namely o v er � + 1 periods before group s got treated. It exactly mimicks the estimator
f group s’s treatment effect at period t s + � proposed by Callaway and Sant’Anna ( 2021 ) and
un and Abraham ( 2021 ), which compares the same groups, o v er the same number of periods.
ccordingly, the magnitude of that placebo may indeed be informative as to the magnitude of the
ias of the estimator in equation ( 3.3 ), as requested by Rambachan and Roth ( 2019 ). Building
 placebo that would similarly mimick the estimator proposed by Borusyak et al. ( 2021 ) is
ot feasible, precisely because that estimator leverages all pre-treatment periods to construct its
aseline. See de Chaisemartin and D’Haultfœuille ( 2021a ) for more discussion of the advantages
f having placebos that mimick actual estimators. 

Another difference between these approaches is that Borusyak et al. ( 2021 ) impose parallel
rends for every group and between every pair of consecutive time periods. 15 Callaway and
ant’Anna ( 2021 ), on the other hand, impose a weaker parallel trends assumption: from period
onwards, cohort c must be on the same trend as the never -treated groups, b ut before that

ohort c may have been on a different trend. The assumption in Callaway and Sant’Anna ( 2021 )
s the minimal assumption ensuring that all the TE c ,c + � can be unbiasedly estimated, but it is
onditional on the design: which groups are required to be on parallel trends at which dates
epends on groups’ realized treatments. It is also not testable. We refer the reader to Marcus and
ant’Anna ( 2021 ) and Borusyak et al. ( 2021 ) for further discussion on the differences between
arallel trends assumptions. 

Overall, whether the estimators in Borusyak et al. ( 2021 ) should be preferred to those in
allaway and Sant’Anna ( 2021 ) and Sun and Abraham ( 2021 ) may depend on one’s degree of
onfidence in the parallel trends assumption, on the type of violations of this assumption that
eems more likely to arise in the application at hand, on whether it is possible to immunize
he estimators against anticipation effects by redefining the treatment date as the announcement
ate, and on one’s willingness to undertake a sensitivity analysis such as the one proposed by
ambachan and Roth ( 2019 ). Note also that if the estimators proposed by Borusyak et al. ( 2021 ),
allaway and Sant’Anna ( 2021 ), and Sun and Abraham ( 2021 ) are significantly different, this

mplies that the parallel trends assumption, at least the ‘strong version’ of this assumption imposed
y Borusyak et al. ( 2021 ) and Sun and Abraham ( 2021 ), must be violated. 
15 de Chaisemartin and D’Haultfœuille ( 2020 ) and Sun and Abraham ( 2021 ) also impose that assumption. 

The Author(s) 2023. 
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3.3. Estimators allowing for dynamic effects when the treatment is not binary or the design is 
not sta g g ered. 

de Chaisemartin and D’Haultfœuille ( 2021a ) propose treatment effect estimators robust to het-
erogeneous and dynamic treatment effects, and that can be used even if the treatment is not binary
or the design is not staggered. In their surv e y of 26 highly cited 2015–2019 AER papers using
a TWFE re gression, the y find that four hav e a binary treatment and a staggered design, so being
able to accommodate more general designs is important. The paper’s main idea is to propose a
generalization of the event-study approach to such designs, by defining the event as the period
where a group’s treatment changes for the first time. With a binary and staggered treatment, the
event per this definition is the period where a group gets treated, so this definition extends the
standard one to general designs. 

More specifically, de Chaisemartin and D’Haultfœuille ( 2021a ) start by showing that for any
group g whose treatment changed for the first time at period F g , the instantaneous and dynamic
effects of that change can be unbiasedly estimated. Let 

δg,� = E( Y g,F g + � − Y g,F g + � ( D g, 1 , . . . , D g, 1 )) , 

be the expected difference between group g’s actual outcome at F g + � and the counterfactual
‘status quo’ outcome it would have obtained if its treatment had remained equal to its period-one
value from period one to F g + � . Let N 

c 
g,� denote the number of groups whose treatment has

not changed yet at F g + � , and with the same treatment as g at period one. de Chaisemartin and
D’Haultfœuille ( 2021a ) show that 

DID g,� = Y g,F g + � − Y g,F g −1 − 1 

N 

c 
g,� 

∑ 

g ′ : D g ′ , 1 = D g, 1 ,F g ′ >F g + � 

( Y g ′ ,F g + � − Y g ′ ,F g −1 ) , 

a DID estimator comparing the F g − 1 -to- F g + � outcome evolution between group g and groups
whose treatment has not changed yet at F g + � and with the same treatment as g at period one,
is unbiased for δg,� under parallel trends assumptions. To test those parallel trends assumptions,
they propose placebo estimators comparing the outcome trends of switchers and nonswitchers
before the switchers switch. 

Then, de Chaisemartin and D’Haultfœuille ( 2021a ) aggregate the DID g,� estimators into an
estimator of the effect of having experienced a weakly higher amount of treatment for � periods.
F or an y real number x and t ∈ { 1 , . . . , T } , let x t denote a 1 × t vector with coordinates equal to
x. When the treatment is binary, for groups untreated at period one, D g, 1 = 0 , so 

δg,� = E( Y g,F g + � ( 0 F g −1 , 1 , D g,F g + 1 , . . . , D g,F g + � ) − Y g,F g + � ( 0 F g + � )) . 

For groups treated at period one, D g, 1 = 1 , so 

− δg,� = E( Y g,F g + � ( 1 F g + � ) − Y g,F g + � ( 1 F g −1 , 0 , D g,F g + 1 , . . . , D g,F g + � )) . 

The right-hand side of the two equations abo v e are effects of having experienced a weakly
higher amount of treatment for � + 1 periods. Accordingly, the DID g,� estimators are aggregated
into a DID � estimator, multiplying by minus one the DID g,� of groups treated at period one.
With a nonbinary treatment, one can also aggregate the DID g,� to estimate the effect of having
experienced a weakly higher amount of treatment for � + 1 periods. 

Ultimately, this approach leads to an event-study graph, with the distance to the first treatment
change on the x-axis, the DID � estimators on the y-axis to the right of zero, and placebo
© The Author(s) 2023. 
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stimators on the y-axis to the left of zero. This event-study graph is useful to test the parallel
rends assumption, and to provide reduced-form evidence of whether weakly increasing the
reatment for � + 1 periods increases or decreases the outcome on average. Ho we ver, interpreting
he magnitude of the DID � estimators might be complicated. For instance, with three periods
nd three groups such that ( D 1 , 1 = 0 , D 1 , 2 = 4 , D 1 , 3 = 1) , ( D 2 , 1 = 0 , D 2 , 2 = 2 , D 2 , 3 = 3) , and
 D 2 , 1 = 0 , D 2 , 2 = 0 , D 2 , 3 = 0) , DID 1 estimates the average of E( Y 1 , 3 (0 , 4 , 1) − Y 1 , 3 (0 , 0 , 0)) and
( Y 2 , 3 (0 , 2 , 3) − Y 2 , 3 (0 , 0 , 0)) . Accordingly, DID 1 does not estimate by how much the outcome

ncreases on average when the treatment increases by a given amount for a given number of
eriods. 

To circumvent this important limitation, two strategies can be implemented. First, the reduced-
orm event-study graph described above can be complemented with a first-stage event-study graph,
here the outcome is replaced by the treatment. The estimators on the first-stage graph show the

verage value of | D g,F g + � − D g, 1 | across all groups entering in DID � . In the example above, the
rst two estimates on the first-stage graph are equal to 1 / 2( D 1 , 2 − D 1 , 1 + D 2 , 2 − D 2 , 1 ) = 3 and
 / 2( D 1 , 3 − D 1 , 1 + D 2 , 3 − D 2 , 1 ) = 2 . This reflects the fact that, in this example, DID 1 is an effect
roduced by increasing the previous and current treatment by three and two units on average.
econd, a weighted average across � of the reduced-form estimators divided by a weighted
verage across � of the first-stage estimators is unbiased for a parameter with a clear economic
nterpretation. That parameter may be used to conduct a cost-benefit analysis comparing groups’
ctual treatments to the status quo scenario where they would have kept all along the same
reatment as in period one. In other words, that parameter can be used to determine if the policy
hanges that took place o v er the duration of the panel led to a better situation than the one
hat would have pre v ailed if no policy change had been undertaken, a natural policy question.
mportantly, that parameter can also be interpreted as an average total effect per unit of treatment,
here ‘total effect’ refers to the sum of the instantaneous and dynamic effects of a treatment. 
The estimators proposed by de Chaisemartin and D’Haultfœuille ( 2021a ) are computed by

he did multiplegt Stata and R commands. To compute those estimators rather than those
roposed in de Chaisemartin and D’Haultfœuille ( 2020 ), the Stata command’s basic syntax is: 

did multiplegt outcome groupid timeid treatment, robust dynamic 

ynamic(#) average effect placebo(#) longdiff placebo breps(#)
luster(groupid) , 

here dynamic(#) specifies the horizon o v er which effects of a first treatment switch have to
e estimated, and placebo(#) specifies the number of placebos to be estimated. 

The estimators in de Chaisemartin and D’Haultfœuille ( 2021a ) can be used with a binary
reatment switching on and off, with a discrete treatment, or with a continuous and staggered
reatment (groups start getting treated at different dates, with differing intensities, but once a
roup gets treated its treatment intensity never changes). The estimators proposed by Callaway
t al. ( 2021 ) can also accommodate continuous and staggered treatments. For continuous and
onstaggered treatments, in their Section 4.3 de Chaisemartin et al. ( 2022 ) extend their baseline
stimators to allow for dynamic effects. With respect to their baseline estimators, the main
ifference is that, when allowing for dynamic effects, fewer units can be used as controls.
ithout dynamic effects, at period t any unit whose treatment has not changed between t − 1

nd t can be used as a valid control. With dynamic effects, only units whose treatments have not
hanged from period 1 to t can be used as valid controls. Therefore, the need for ‘stayers’ becomes
ven stronger when allowing for dynamic effects: many units need to keep the same value of the
reatment for a large number of time periods. Developing estimators robust to dynamic effects
The Author(s) 2023. 
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that can be used with a continuous treatment and no stayers has not been done yet, and is a
promising area for future research. 

The estimators in de Chaisemartin and D’Haultfœuille ( 2021a ) can, of course, also be used
with a binary and staggered treatment. Without covariates in the estimation, they are then
equi v alent to the estimators proposed by Callaway and Sant’Anna ( 2021 ) using the not-yet-
treated as controls. With covariates, the estimators in Callaway and Sant’Anna ( 2021 ) and
de Chaisemartin and D’Haultfœuille ( 2021a ) differ. Callaway and Sant’Anna ( 2021 ) consider
time-inv ariant cov ariates, and assume that trends are parallel once one conditions on them. de
Chaisemartin and D’Haultfœuille ( 2021a ) instead consider time-varying covariates, and assume
that trends are parallel once the linear effect of those time-v arying cov ariates on the outcome
is accounted for. This, for instance, allows them to include group-specific linear trends in the
estimation. With covariates, the parallel trends conditions in Callaway and Sant’Anna ( 2021 ) and
de Chaisemartin and D’Haultfœuille ( 2021a ) are not nested, and in principle one could combine
both. 

Finally, it is worth noting that de Chaisemartin and D’Haultfœuille ( 2021b ) propose estimators
for the case with several treatments. They propose both estimators that generalize the DID M 

estimator in de Chaisemartin and D’Haultfœuille ( 2020 ), and rule out dynamic effects and also
estimators that generalize those in Callaway and Sant’Anna ( 2021 ), and allow for dynamic
effects. 

4. APPLICATION 

In this section, we revisit an application with a binary and staggered treatment, thus allowing us to
compute several of the heterogeneity-robust DID estimators reviewed abo v e. Between 1968 and
1988, 29 US states adopted a unilateral divorce law (UDL). Wolfers ( 2006a ), building upon Fried-
berg ( 1998 ), studies the effects of those laws on divorce rates, using a version of the event-study
regression in ( 2.11 ). We use his data (Wolfers, 2006b ) to revisit this question. In what follows,
estimates are weighted by states’ populations and standard errors are clustered at the state level, as
in Wolfers ( 2006a ). As the author estimates UDL’s dynamic effects up to fifteen years after adop-
tion, in our replication we focus on heterogeneity-robust DID estimators allowing for dynamic
effects, and present the estimated effects o v er the same horizon. We use Stata for this replica-
tion e x ercise, and the v ersions of the twowayfeweights , eventstudyinteract , csdid ,
did imputation and did multiplegt commands available from the SSC repository at
the end of April 2022. 

Figure 3 shows the instantaneous and dynamic effects of passing a UDL, according to six
estimation methods. In the top-left panel, we show the estimates from the event-study regression
in ( 2.11 ), with L = 15 , K = 10 , and endpoint binning. According to this regression, UDLs
increase the divorce rate on the year when the law is passed and for seven years thereafter.
Eleven years after those laws are passed, their effect becomes significantly negative. Those
effects are consistent with those in column (1) of Table 2 of Wolfers ( 2006a ). Our event-study
regression and that in Wolfers ( 2006a ) differ in two dimensions: Wolfers ( 2006a ) does not include
any placebo indicator for pre-adoption periods, and he includes post-adoption indicators for bins
of two years (one indicator for the year when the law is passed and the year after that, one indicator
for the second and third years after the law is passed, etc.). Results seem fairly robust to those
specification choices. The placebo estimates are small and individually and jointly insignificant
(F-test p-value = 0.863). 
© The Author(s) 2023. 
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Figure 3. Effects of unilateral divorce laws, using the data in Wolfers ( 2006a ). 
Note: This figure shows the estimated effects of unilateral divorce laws on the divorce rate and placebo 
estimates, using the data in Wolfers ( 2006a ) and six estimation methods. In the top-left panel, we show 

estimated effects per the event-study regression in ( 2.11 ), with L = 15 , K = 10 , and endpoint binning. In 
the top-centre (resp. top-right, bottom-left, bottom-centre) panel, we show estimated effects per the 

eventstudyinteract (resp. csdid , did imputation , did multiplegt ) Stata command. In 
the bottom-right panel, we show estimated effects per the did multiplegt Stata command, controlling 

for state-specific linear trends. All estimations are weighted by states’ populations. Standard errors are 
clustered at the state level; 95% confidence intervals relying on a normal approximation are shown in red. 

 

e  

d  

y  

w  

u  

i  

t  

s  

b

©

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/article/26/3/C

1/6604378 by Bibliotheque Sciences Po user on 15 Septem
ber 2025
We follow Sun and Abraham ( 2021 ), and compute the weights attached to UDL’s instantaneous
ffect in this event-study regression. 16 As shown in equation ( 2.12 ), this coefficient can be
ecomposed as the sum of two terms. The first term is a weighted sum of UDL’s effects in the
ear when they are passed, across 27 states, where all effects receive a positive weight. The
eights are ne gativ ely correlated with the year variable (correlation = −0 . 232 ), so this first term
pweights UDL’s instantaneous effects in states passing a law early, and downweights UDL’s
nstantaneous effects in states passing a law late. Accordingly, this first term may differ from
he average instantaneous effects of UDLs if those ef fects v ary between early- and late-adopting
tates, but it at least estimates a conv e x combination of effects. The second term is a weighted
16 In practice, we use the twowayfeweights Stata command, which has an option to compute the correlation 
etween the weights and other variables that we use below. 

The Author(s) 2023. 
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sum of UDL’s effects in the years after they are passed. Twenty-nine effects of having passed a
UDL a year ago enter in that second term, sixteen enter with a positive weight, and thirteen enter
with a ne gativ e weight. The positiv e and ne gativ e weights, respectiv ely, sum to 0.012 and −0 . 012 .
Twenty-nine effects of having passed a UDL two years ago enter in that second term, ten effects
enter with a positive weight, and eighteen enter with a negative weight. The positive and negative
weights, respectively, sum to 0.010 and −0 . 010 . Effects of having passed a UDL three, four, ...,
fourteen, and more than fifteen years ago, also enter in that second term. In total, the positive and
ne gativ e weights in that second term, respectively, sum to around 0.064 and −0 . 064 . If UDL’s
dynamic ef fects v ary across states, that second term may not be equal to zero, thus further biasing
the estimated instantaneous effect in the event-study regression. Ho we ver, those contamination
weights are not very large, so this bias is likely to be small. Ov erall, this ev ent-study re gression
seems fairly robust to heterogeneous treatment effects. 

In the top-centre panel of Figure 3 , we use the eventstudyinteract command to com-
pute the estimators proposed by Sun and Abraham ( 2021 ). The estimated effects are very similar
to those in the top-left panel. This could either be due to the fact that UDLs effects are not very
heterogeneous or to the fact that the event-study regression is fairly robust to heterogeneous treat-
ment effects, as suggested abo v e. Interestingly, the confidence intervals are, if anything, slightly
wider in the top-left than in the top-centre panel of Figure 3 , thus showing that heterogeneity-
robust DID estimators are not al w ays less precise than TWFE estimators. The placebos are
individually insignificant. They are also substantially smaller than the estimated effects of UDLs:
it does not seem that violations of parallel trends can fully account for those estimated effects. 

In the top-right panel of Figure 3 , we use the csdid command to compute the estimators
proposed by Callaway and Sant’Anna ( 2021 ), using the ‘not-yet-treated’ states as the control
group. The estimated effects are very similar to those in the top-centre panel. Nineteen states
never adopt a UDL over the period under consideration, so the group of ‘never-treated’ states
used as controls by eventstudyinteract is quite large, and accounts for a relatively large
fraction of the group of ‘not-yet-treated’ states used as controls by csdid . This may explain why,
in this application, the two commands yield very similar estimates. Using the larger control group
of ‘not-yet-treated’ states also does not lead to markedly more precise estimates: the widths of the
confidence intervals are similar in the two panels. The placebos produced by csdid are small
and individually insignificant. The placebos are much smaller in the top-right than in the top-
centre panel. This is because csdid computes first-difference placebos, comparing the outcome
evolution of treated and not-yet treated states, before the treated start receiving the treatment, and
between pairs of consecutive periods. 17 On the other hand, eventstudyinteract computes
long-difference placebos. For instance, the second placebo, shown at t = −3 on the graph,
compares the outcome evolution of treated and never-treated states, from F g − 1 , the period
before the treated start getting treated, to F g − 3 . See de Chaisemartin and D’Haultfœuille
( 2021a ) for a discussion of the respective advantages of long- and first-difference placebos. 

In the bottom-left panel of Figure 3 , we use the did imputation command to compute the
estimators proposed by Borusyak et al. ( 2021 ). The effects are very similar to those found by the
previous two estimators. The confidence interval of the instantaneous effect is much tighter in
the bottom-left panel than in all other panels: for that treatment effect, the estimator proposed by
Borusyak et al. ( 2021 ) does lead to a large precision gain. Ho we ver, the opposite can hold when
one considers dynamic effects. For instance, the confidence interval of the effect two years after
passing a UDL is more than 50% larger per did imputation than per csdid . Accordingly,
17 csdid has an option to compute long-difference placebos, but it returned an error when we used it. 

© The Author(s) 2023. 
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he estimators proposed by Borusyak et al. ( 2021 ) do not al w ays lead to precision gains, relative
o those proposed by Sun and Abraham ( 2021 ) or Callaway and Sant’Anna ( 2021 ). The placebos
roduced by did imputation are small, individually insignificant, and jointly marginally
nsignificant (F-test p-value = 0.541). 18 The placebos computed by did imputation are
airly different from those computed by the other commands. Essentially, the command estimates
 TWFE regression among all the untreated ( g, t) , with K leads of the treatment. To be consistent
ith the other estimations, we run the command with nine leads. Then everything is relative to

en periods prior to treatment, which is why the placebo estimate is set to 0 at t = −10 in the
ottom-left panel, instead of at t = −1 in the other panels. 

In the bottom-centre panel of Figure 3 , we use the did multiplegt command to compute
he estimators proposed by de Chaisemartin and D’Haultfœuille ( 2021a ). The resulting estimates
re extremely close to those produced by the csdid command. The only reason why the two
ets of estimates are not identical is that the estimation is weighted by states’ population, and the
wo commands seem to handle weights slightly differently. Without weighting, the two sets of
stimates are identical, as e xpected, giv en that there are no covariates in the estimation and we
sed csdid with the not-yet-treated as controls. The placebos computed by did multiplegt
re long-difference placebos, similar to those computed by eventstudyinteract , except
hat did multiplegt uses the not-yet-treated as controls. They are small, and individually
nd jointly insignificant (F-test p-value = 0.427). 

The estimates discussed so far do not control for state-specific linear trends. Whether such
rends should or should not be included to estimate the effect of UDLs has been a debated issue
n this literature, with Friedberg ( 1998 ) arguing in their fa v our and Wolfers ( 2006a ) arguing
hat they may conflate dynamic effects. The results presented so far already suggest that includ-
ng state-specific linear trends is unnecessary, as placebos are small and insignificant without
hem. To confirm that, we ran the did multiplegt command again, controlling for state-
pecific linear trends. 19 The results, displayed in the bottom-right panel of Figure 3 , show that
esults are fairly insensitive to the inclusion of state-linear trends. If anything, adding them
akes the estimated long-run effects more noisy. The only argument in fa v our of state-specific

rends is that the placebos are slightly smaller with them, although the difference is most likely
nsignificant. 

Finally, to synthetize our results and obtain a point estimate that can be compared to the results
n Wolfers ( 2006a ), we average UDL’s effects from the year the law is passed to seven years
hereafter. The results are displayed in Table 1 . We do not include therein the estimates from the
ventstudyinteract and csdid commands, as one cannot readily obtain the standard error
f this average effect from these commands. The results show that, according to all estimation
ethods, UDLs positively affect the divorce rate from the year the law is passed to seven years

hereafter. All estimates are fairly similar to each other and point towards an increase of 20%. The
stimated standard error is substantially lower using the author’s original specification, which
s not surprising as it is less flexible than the other estimation methods. The estimated standard
18 We did not report a joint test that all placebos are equal to 0 based on eventstudyinteract : this command 
oes not readily allow to compute this test, as it does not return the covariances between the estimators. Similarly, csdid 
oes not allow to jointly test if the placebos in Figure 3 are significant: it computes a joint nullity test, but for more 
isaggregated placebos. 

19 csdid does not allow for group-specific trends. did imputation allows in principle for such trends but returned 
n error when such trends, were added. eventstudyinteract allows for such trends. 

The Author(s) 2023. 
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Table 1. The short-run effects of unilateral divorce laws. 

Wolfers ( 2006a ) 0.200 
(0.056) 

Event study without binning pairs of years 0.249 
(0.106) 

Borusyak et al. ( 2021 ) 0.198 
(0.129) 

de Chaisemartin and D’Haultfœuille ( 2021a ), no linear trends 0.185 
(0.107) 

de Chaisemartin and D’Haultfœuille ( 2021a ), linear trends 0.219 
(0.096) 

Notes: This table shows the estimated effects of unilateral divorce laws on the divorce rate, from 0 to 7 years after 
adoption, using the data in Wolfers ( 2006a ). The first set of estimates is based on the regression in column 2 of Table 2 of 
Wolfers ( 2006a ). The second (resp. third, fourth) set of estimates is based on the results shown in the bottom-left (resp. 
bottom-centre, bottom-right) panel of Figure 3 . All estimations are weighted by states’ populations. Standard errors, 
clustered at the state level, are shown beneath each estimate, between parentheses. 
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error is slightly larger using Borusyak et al. ( 2021 ) than the flexible event-study regression or the
estimators proposed by de Chaisemartin and D’Haultfœuille ( 2021a ). 

5. CONCLUSION AND AVENUES FOR FUTURE RESEARCH 

The literature re vie wed in this surv e y has shown that TWFE regressions may not al w ays estimate
a conv e x combination of treatment effects. In such cases, it may be hard to give them a causal
interpretation, as TWFE coefficients could for instance be of a different sign than every unit’s
treatment effect. Table 2 summarizes the alternative estimators available to applied researchers,
depending on their research design and on whether they are ready or not to rule out dynamic
ef fects. The table sho ws that the literature so far has mostly focused on pro viding alternativ e
estimators for the case with a binary treatment and staggered adoption. Heterogeneity-robust
DID estimators that can be used in more complicated designs are scarce, while many appli-
cations where TWFE regressions have been used either do not have a staggered design or do
not have a binary treatment. Developing more estimators that can be used in such designs is
a promising avenue for future research. This can often be done by building upon the insights
gained from studying the binary and staggered case. For instance, the estimators proposed by de
Chaisemartin and D’Haultfœuille ( 2021a ) build upon those proposed by Callaway and Sant’Anna
( 2021 ) for the binary and staggered case. We hope that the whirlwind of DID working papers
shall continue, until heterogeneity-robust DID estimators are as widely applicable as TWFE
regressions. 

It is also important to stress that, at this stage, it is still unclear whether researchers should
systematically abandon TWFE estimators. Those estimators sometimes estimate a conv e x com-
bination of effects under the parallel trends assumption, they may estimate the ATT if the weights
attached to them are uncorrelated with the treatment effects TE g,t , and they often have a lower
variance than the heterogeneity-robust estimators re vie wed in the previous section. While there
are examples where TWFE and heterogeneity-robust DID estimators are economically and sta-
tistically different (see, e.g., the empirical examples in de Chaisemartin and D’Haultfœuille,
2020 , 2021a , b ; Baker et al., 2022 ), the previous section also shows a data set where TWFE
© The Author(s) 2023. 
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Table 2. A summary of available heterogeneity-robust DID estimators. 
Panel A: Estimators ruling out dynamic effects 

(Can be used when outcome unaffected by past treatments) 
Treatment Estimators available Stata commands See: 

Binary de Chaisemartin and D’Haultfœuille ( 2020 ) did multiplegt 3.1 
Imai and Kim ( 2021 ) 3.1 
Borusyak et al. ( 2021 ) did imputation 3.2.3 

Discrete de Chaisemartin and D’Haultfœuille ( 2020 ) did multiplegt 3.1 
Continuous, with stayers de Chaisemartin et al. ( 2022 ) See Section 3.1 3.1 
Continuous, without stayers de Chaisemartin et al. ( 2022 ) See Section 3.1 3.1 

Graham and Powell ( 2012 ) gmm 3.1 
Chamberlain ( 1992 ) gmm 3.1 

Several treatments de Chaisemartin and D’Haultfœuille ( 2021b ) did multiplegt 3.3 
Panel B: Estimators allowing dynamic effects 

(Can be used when outcome affected by past treatments) 
Treatment Estimators available Stata commands See: 
Binary and staggered Callaway and Sant’Anna ( 2021 ) csdid 3.2.1 

Sun and Abraham ( 2021 ) eventstudyinteract 3.2.2 
Borusyak et al. ( 2021 ) did imputation 3.2.3 
de Chaisemartin and D’Haultfœuille ( 2021a ) did multiplegt 3.3 

Binary or discrete, nonstaggered de Chaisemartin and D’Haultfœuille ( 2021a ) did multiplegt 3.3 
Continuous and staggered de Chaisemartin and D’Haultfœuille ( 2021a ) did multiplegt 3.3 

Callaway et al. ( 2021 ) 3.3 
Continuous and nonstaggered, de Chaisemartin et al. ( 2022 ) See paper 3.3 

with stayers 
Continuous and nonstaggered, No estimator available yet 

without stayers 
Several treatments de Chaisemartin and D’Haultfœuille ( 2021b ) did multiplegt 3.3 

Notes: All the Stata commands have R equi v alents with the same name, except eventstudyinteract that does not have an R equi v alent, and 
csdid whose R equi v alent is called did . The table’s last column indicates the section of the paper where the estimator is described. 
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nd heterogeneity-robust DID estimators lead to very similar conclusions. Understanding the
ircumstances where TWFE and heterogeneity-robust DID estimators are more likely to differ
s an important question. We conjecture that differences are likely to be larger in complicated
esigns (e.g., a nonbinary treatment that can turn on and off multiple times, or several treatments)
han in simple designs (e.g., a single binary and staggered treatment). This conjecture is based
n our discussion of equation ( 2.3 ) in Section 2 . This is also a pattern we found when comput-
ng TWFE and heterogeneity-robust DID estimators in four different data sets, in the empirical
xamples of this survey and of de Chaisemartin and D’Haultfœuille ( 2020 , 2021a , b ), but those
xamples are not enough to draw general conclusions: a systematic comparison of TWFE and
eterogeneity-robust DID estimators in a broad set of applications is in order. 

Analysing estimators’ robustness to heterogeneous treatment effects is important, as the as-
umption that all units are affected in the same way by a treatment is seldom credible. In this
urv e y, we hav e focused on estimators relying on parallel trends assumptions, but this question
s also rele v ant for other estimators. See, for instance, Słoczy ́nski ( 2020 ) and Blandhol et al.
 2022 ) for instrumental variables estimators with covariates. More closely related to our set-up,
he impact of heterogeneous treatment effects in the ‘group fixed-effects’ model of Bonhomme
nd Manresa ( 2015 ) remains to be studied. 
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