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Abstract

This paper identifies tangible design parameters that might lead to inaccurate esti-

mates of relatively small effects, the short-term health effects of air pollution. Low

statistical power not only makes relatively small effect difficult to detect but resulting

published estimates also exaggerate true effect sizes. We first document the exis-

tence of this issue in the epidemiology and economics literature of interest. Then,

we identify its drivers using real data simulations that replicate most prevailing in-

ference methods. Finally, we argue relevance to many other literatures and propose

a principled workflow to evaluate and avoid exaggeration when conducting a non-

experimental study.
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1 Introduction
From extreme events such as the London Fog of 1952 to the development of sophisticated

time-series analyses, a vast epidemiology literature of more than 600 studies has estab-

lished that air pollution induces adverse health effects on the very short-term. Increases

in the concentration of several ambient air pollutants have been found to be associated

with increases in daily mortality and emergency admissions for respiratory and cardio-

vascular causes (Schwartz 1994, Samet et al. 2000, Le Tertre et al. 2002, Bell, Samet and

Dominici 2004, Liu et al. 2019). Based on these results, environmental protection and

public health agencies have designed policies such as air quality alerts to mitigate the

burden of air pollution. Accurate estimates of these effects are therefore crucial as they

are directly used to implement and update policies to address this major public issue.

With this objective in mind, researchers in economics and epidemiology have recently

used causal inference methods to improve on the standard epidemiology literature that

relied on associations (Dominici and Zigler 2017, Bind 2019). Newly obtained results

confirm the short-term health effects of air pollution (Schwartz et al. 2015, Schwartz,

Fong and Zanobetti 2018, Deryugina et al. 2019). Yet, causal estimates are substantially

larger than what would have been predicted by the standard epidemiology literature,

with some estimates being 10 times larger. What can explain such a variation in the

magnitude of effect sizes? Causal strategies could arguably remove omitted variable bias,

reduce attenuation bias caused by classical measurement error in air pollution exposure

or target a different causal estimand. Our literature review however suggests an alterna-

tive but complementary explanation based on statistical power and publication bias.

The left panel of Figure 1 reveals the presence of a publication bias in this literature.

Following Brodeur et al. (2016), Brodeur, Cook and Heyes (2020) approach, we show that

there is an excess mass in the t-statistics distribution at the 5% statistical significance

threshold. The right panel of Figure 1 produces further evidence of this favoring of sig-

nificant estimates but also points to a consequence of this publication bias: published

estimates from imprecise studies might be exaggerated. If published estimates captured

true effects, their standardized effect size should be independent of the precision of the

study. However, in this plot we observe that less precise studies display larger standard-

ized effect sizes. Such a pattern emerges when publication favors statistically significant

findings. In imprecise settings, only large–too large–effects are significant, e.g., at least

1.96 standard errors away from 0 at the 5% significance level. Such effects are located in

the tails of the distribution and do not capture the true effect. Following a similar rea-

soning, and more generally, relatively imprecise studies will produce inflated published
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Figure 1: Suggestive Evidence of Publication Bias and Exaggeration in the Causal
Inference Literature.

5% Significance Threshold

Notes: The sample in the left panel includes all 537 estimates reported in articles from the causal literature,
including "naive" OLS estimates and placebo tests. Following Brodeur, Cook and Heyes (2020), the weights
are equal to the inverse of the number of tests displayed in the same table multiplied by the inverse of
the number of tables in the article. In the right panel we exclude the "naive" OLS estimates and placebo
tests. Both axes are on a log10 scale. Limiting the sample to economics journal leaves the figures essentially
unchanged (see supplemental material) . Distinguishing between top 5 and other journals shows that even
if there standardized effect sizes are typically smaller in top 5 journals, the same inverse relationship can
be observed.

estimates in the presence of publication bias (Ioannidis 2008, Gelman and Carlin 2014)1.

A lack of relative precision–or equivalently of statistical power–can thus lead to exagger-

ation and could explain the discrepancy highlighted above. Studies on the short-term

health effects of air pollution often display a low relative precision as a result of typi-

cally small effect sizes and relatively coarse data, at the city-day level (Peng, Dominici

and Louis 2006, Peng and Dominici 2008). While these factors make them particularly

subject to exaggeration issues, many other related or unrelated literature chase relatively

small effects and may also suffer from this type of bias.

This paper aims to identify the tangible design parameters that create and drive ex-

aggeration, through the case of studies on the short-term health effects of air pollution.

We also document the amount of exaggeration in this literature by gathering 2692 esti-

mates from a unique corpus of 668 articles based on associations and of 36 articles that

rely on causal inference methods. For each of these studies, we run calculations to assess

whether the design of the study would allow to accurately capture the true effect if it

was smaller than the observed estimate (Gelman and Carlin 2014, Ioannidis, Stanley and

1Section 2 illustrates the mechanism in more details using a concrete example.
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Doucouliagos 2017, Lu, Qiu and Deng 2019, Timm 2019). However, such calculations do

not highlight the causes of exaggeration. Using real data from the US National Morbidity,

Mortality, and Air Pollution Study (Samet et al. 2000), we therefore implement simula-

tions replicating most prevailing causal and non-causal inference methods to identify the

characteristics of research designs that drive exaggeration. We then argue that these tan-

gible parameters should also create exaggeration and bias in other literatures. Finally, we

provide a principled workflow to evaluate the risks of exaggeration when carrying out a

non-experimental study.

Our literature review results suggest that a substantial share of estimates published

in epidemiology and economics could be inflated. To run such calculations, we need

to hypothesized true effects sizes. Due to the wide variety of treatments and outcomes

considered in this literature, we unfortunately cannot rely on meta-analyses to do so.

Since Ioannidis, Stanley and Doucouliagos (2017) and Ferraro and Shukla (2020) find that

half of the estimates published in economics and environmental economics are inflated

by a factor of at least two, we evaluate the ability of the studies in the review to retrieve

effects that would be twice as small as the obtained estimates. Reassuringly, a reasonable

share of studies might not suffer from these issues. However, for a quarter of studies,

estimated effect sizes would not be able to capture such effects sizes and would exaggerate

them by a factor of at least 1.9. For subsets of the two literatures, hypothetical true effect

sizes informed by meta-analyzes confirm these exaggeration issues.

Then, our simulation results enable us to identify concrete causes of exaggeration.

While our simulations are tuned to study the acute health effects of air pollution, their

conclusions likely extend to many other literatures. The intuitions behind the impact of

each driver can be applied to most settings, even outside health or air pollution studies.

In our context, we first show that as expected exaggeration increases when the sample

size decreases. Importantly, we find that for all identification strategies, exaggeration can

arise even for large sample sizes. Second, the simulations confirm that the smaller the

effect targeted, the larger exaggeration is. They also show that when effect size is small,

exaggeration can be substantial. Third, we find that the variation used for identification

is a key driver of exaggeration. Using rare exogenous shocks can produce greatly in-

flated estimates. The number of shocks can represent less than 1% of the observations for

some studies leveraging public transportation strikes or thermal inversions as exogenous

shocks, leading to large exaggeration ratios even when sample and true effect sizes are

large. Similarly, substantial exaggeration can arise when the instrument only explains a

limited portion of the variation in air pollution and that, even when F-statistics are large2.

2Since this paper focuses on actual implementation of non-experimental studies, it mostly documents
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Finally, we show that the count of cases of the outcome is a key driver of exaggeration.

Estimated effects of air pollution on the elderly or children can be exaggerated due to the

small number of daily hospital admissions or deaths for these groups.

This paper makes three main contributions. First, it contributes to the literature on

acute health effects of air pollution and more generally on the impacts of air pollution by

underlining the existence of exaggeration issues. We document the presence of a publi-

cation bias in this literature and discuss how research design parameters specific to this

literature can cause exaggeration.

Second, this paper contributes to a growing literature assessing statistical power and

exaggeration issues in various fields (Ioannidis 2008, Gelman and Carlin 2014, Ioannidis,

Stanley and Doucouliagos 2017, Ferraro and Shukla 2020, Stommes, Aronow and Sävje

2021, Arel-Bundock et al. 2022). Existing meta-analyses show that the economics litera-

ture is plagued with serious power issues but do not usually discuss the determinants of

this lack of power. We overcome this key limitation by coupling our literature review with

simulations. Outside of meta-analyses, the drivers of exaggeration in non-experimental

studies also remain understudied. To our knowledge, only three papers thoroughly ad-

dress this critical question (Schell, Griffin and Morral 2018, Griffin et al. 2021, Black

et al. 2022). We complement these studies focusing on difference-in-differences event-

study designs by studying the drivers of exaggeration in a wide array of research designs:

standard regression, reduced-form, instrumental variable and regression discontinuity

design. We identify design parameters that might drive exaggeration in our literature of

interest but also in any applied analysis and invite the reader to pay attention to these

tangible characteristics in their own work. We expect power, effective sample size, effect

size, the number of shocks or the strength of the instrument to drive the statistical power

of most studies, potentially creating important bias in resulting estimates.

Finally, we contribute to a literature discussing the replicability and credibility of em-

pirical findings in non-experimental studies (Button et al. 2013, Open Science Collabo-

ration 2015, Camerer et al. 2018, Brodeur, Cook and Heyes 2020, for instance). We strive

to put statistical power at the center of non-experimental analyses since a lack of it can

lead to inaccurate published estimates. On the other hand, well-powered studied do not

lead to substantial exaggeration even in the presence of publication bias. We thus pro-

vide a reproducible workflow to evaluate and avoid exaggeration issues when running

a non-experimental study. It suggests to build simulations using fake data or existing

datasets before carrying out a study to identify potential exaggeration and its sources.

tangible drivers. We analyze a theoretical underlying mechanism of exaggeration specific to causal identi-
fication strategies (Bagilet and Zabrocki-Hallak 2022).
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Once the analysis is completed, we recommend to run a retrospective power analysis to

assess whether the design used would have accurately recovered the true effect if it was

in fact smaller than the one estimated. We also advocate for reporting these resulting

power calculations. To ease the adoption of this workflow, we make all replication and

supplementary materials available on the project’s website. We also make the algorithm

we developed to automatically review the epidemiology literature readily available to

almost instantaneously evaluate publication bias and exaggeration issues in other fields

reporting point estimates and confidence intervals in plain text.

In the following section, we implement a simple simulation exercise to show why sta-

tistically significant estimates exaggerate true effect sizes when studies have low statisti-

cal power. In section 3, we present our retrospective analysis of the literature. In section

4, we detail our simulation procedure to replicate empirical strategies. We display the

simulation results in section 5 and provide specific guidance to avoid exaggeration when

running a non-experimental study in section 6.

2 Background on Statistical Power and Exaggeration
In a seminal paper, Gelman and Carlin (2014) point out that statistically significant esti-

mates suffer from a winner’s curse in under-powered studies. These estimates can largely

exaggerate true effect sizes or can even be of the opposite sign. In this section, we im-

plement a simple simulation exercise to illustrate these two seemingly counter-intuitive

issues.

2.1 Illustrative Example
Let’s simulate an experiment in which a mad scientist is able to increase the concentra-

tion of fine particulate matter (PM2.5) to estimate the short-term effects of air pollution

on daily non-accidental mortality. The experiment takes place in a major city over the

366 days of a leap year. The scientist increases the concentration of particulate matter by

10 µg/m3—a large shock equivalent to a one standard deviation increase in the concen-

tration of PM2.5. Concretely, the scientist implements a complete experiment where they

randomly allocate half of the days to the treatment group and the other half to the control

group. They then measure the treatment effect of the intervention by computing the av-

erage difference in means between treated and control outcomes. They find a treatment

effect of 4 additional deaths that is statistically significant at the 5% level. The statistical

significance of the estimate fulfills the scientist expectations.
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Contrary to the scientist, we know the true effect of the experiment since we created

the data. Table 1 displays the pair of potential outcomes of each day, Yi(Ti = 0) and

Yi(Ti = 1). Yi(Ti) represents the daily count of non-accidental deaths and Ti the treatment

assignment, equal to 1 when unit i is treated and 0 otherwise. We first simulate the

daily non-accidental mortality counts in the absence of treatment (i.e., the Y (0) column

of Table 1), by drawing 366 observations from a negative binomial distribution with a

mean of 106 and a variance of 402. We choose these parameters to approximate the

distribution of non-accidental mortality counts in a large European city. We then define

the counterfactual distribution of mortality by adding the treatment effect, drawn from a

Poisson distribution (i.e., the Y (1) column of Table 1). We choose its parameter to increase

the number of death by 1 on average3.

Table 1: Science Table of the Experiment.

Day Index Yi(0) Yi(1) τi Ti Yobs
i

1 122 124 +2 1 124
2 94 96 +2 1 96
3 96 98 +2 0 96
...

...
...

...
...

364 96 97 +1 0 96
365 98 98 +0 0 98
366 143 144 +1 1 144

Notes: This table displays the potential outcomes,
the unit-level treatment effect, the treatment status
and the observed daily number of non-accidental
deaths for 6 of the 366 daily units in the scientist’s
experiment.

Following the fundamental problem of causal inference, the daily count of deaths the

scientist observes is given by the equation: Y obs
i = Ti × Yi(1) + (1 − Ti) × Yi(0). Consider-

ing that the assignment of the treatment was random, how can the statistically significant

estimate found by the scientist be 4 times larger than the true treatment effect size? Repli-

cating the experiment a large number of times explains this apparently puzzling result.

2.2 Defining Statistical Power, Exaggeration Ratio and Type S Error
Figure 2 plots the estimates of 10,000 iterations of the experiment. Even if there is

3In relative terms, the treatment effect size we set represents a 1% increase in the health outcome. The
magnitude of this hypothetical effect is larger than the one found in a recent and large-scale study based
on 625 cities. Liu et al. (2019) estimated that a 10 µg/m3 increase in PM2.5 concentration was associated
with a 0.68% (95% CI, 0.59 to 0.77) relative increase in daily all-causes mortality.
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a large variation in the effect size of estimates, their average is reassuringly equal to the

true treatment effect of 1 additional death. We can however see that estimates close to the

true effect size would not be statistically significant at the 5% level. In a world without

publication bias, several replications of this experiment would recover the true treatment

effect. Unfortunately, despite recent changes in scientific practices and editorial poli-

cies, non-statistically significant estimates and replication exercises are still not valued

enough (Brodeur, Cook and Heyes 2020). In a world with publication bias, statistically

significant estimates are more likely to be made public. Out of the 10,000 simulation es-

timates, about 800 are statistically significant at the 5% level. The statistical power of the

experiment, which is the probability to reject the null hypothesis when there is actually

an effect, is equal to 8%. The scientist was therefore lucky to get a statistically significant

estimate.

Figure 2: Replicating 10,000 Times the Experiment.

Average of Estimates

Notes: Each dot represents a point estimates of one of the 10,000 iterations of the randomized experiment
ran by the mad scientist. Red dots are statistically significant at the 5% level while blue dots are not. The
black solid line represents the average of estimates, equal to the true average effect of 1 additional death.

With such a low statistical power, statistically significant estimates are however not

informative of the treatment of interest. Two metrics, the average type M (magnitude) er-

ror and the probability to make a type S (sign) error help assess the negative consequences

of a lack of statistical power. The exaggeration ratio, or expected type M error, is defined

as the ratio of the absolute values of the statistically significant estimates over the true

effect size (Gelman and Carlin 2014). In the present case, with a statistical power of 8%,
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the scientist could expect their statistically significant estimates to be inflated on average

by a factor of 5. We also notice in Figure 2 that a non-negligible fraction of statistically

significant estimates are of the wrong sign: this proportion is the probability of making

a type S error (Gelman and Carlin 2014). In this experiment, a statistically significant

estimate has a 8% probability of being of the wrong sign.

Formally, the statistical power of a test is the probability of rejecting the null hypoth-

esis H0 : β = 0, where β is the true effect of the estimand of interest. For β̂, a normally

distributed unbiased estimate of β with standard error σ , the power of the null hypothesis

test at the 5% level is equal to Φ
(
−1.96− β

σ

)
+ 1−Φ

(
1.96− β

σ

)
, where Φ is the cumulative

distribution function of the standard normal distribution. It increases with β, the true

value of the effect and with the precision of the estimate, i.e., when σ decreases. The

exaggeration ratio is E

(
|β̂|
|β|

∣∣∣∣∣ β,σ , |β̂|/σ > 1.96
)

and the probability to make a type S error

is given by Pr
(
β̂
β < 0

∣∣∣∣∣ β,σ , |β̂|/σ > 1.96
)
. Zwet and Cator (2021) and Lu, Qiu and Deng

(2019) derive closed-form expressions for these quantities. They show that both the ex-

aggeration ratio and the probability of type S error decrease with β and the precision of

the estimate and thus with statistical power.

To obtain statistically significant estimates that are informative of the true value of

the effect size, the scientist would need to improve the design of their study in order to

increase its statistical power.

3 Retrospective Analysis of the Literature
This section first describes how we ran retrospective analyses of the standard epidemiol-

ogy and causal inference literatures. We then assess to what extent they could suffer from

low statistical power issues.

3.1 Our Approach
The formulas for power, exaggeration ratio and type S error described in the previous

section all depend on the true magnitude of the estimand of interest. The true effect

is however never observed in a given study. We can overcome this limitation with a

retrospective power analysis. Essentially, it addresses the following question: would

the design of our study be reliable enough to retrieve the true effect if it was in fact

smaller than the obtained estimate? A retrospective power analysis can be considered as
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a thought-experiment in which we would exactly replicate the study many times under

the assumption that the true effect is different from the observed estimate. The reasoning

is analogous to the analysis in the previous section. Concretely, Gelman and Carlin (2014)

propose to run simulations in which we draw many estimates from the asymptotic distri-

bution of the estimator, a normal distribution with mean equal to the hypothesized true

effect and a standard deviation equal to the standard error we obtained in the study. The

statistical power is the proportion of sampled estimates that are statistically significant at

the 5% level. The exaggeration ratio is computed as the average ratio of the absolute val-

ues of statistically significant estimates over the assumed true effect size. The probability

to make a type S error is the proportion of significant estimates that are of the opposite

sign of the true value. In this project, we use the R package retrodesign developed by

Timm (2019) that implements the closed-form analogue of these simulations (Lu, Qiu

and Deng 2019).

To get a general overview of power issues in the standard epidemiology and causal in-

ference literatures, we first carry out a simple retrospective analysis for each study. These

computations rely on hypothesized true effect sizes. Yet, due to variety of treatments and

outcomes considered in this literature, it is not possible to make general aggregated as-

sumption on true effect sizes. We have to consider specific hypothesized true effect sizes

for each study. Since Ioannidis, Stanley and Doucouliagos (2017) and Ferraro and Shukla

(2020) find a typical exaggeration of two in the economics literature. We therefore assess

what proportion of studies would have a design reliable enough to retrieve an effect size

equal to half of the obtained estimate. On average, by what factor would statistically sig-

nificant estimates be inflated? A well-designed study should be able to detect a range of

plausible effect sizes that are smaller than the observed estimate. This method is however

by no means ideal but offers some sort of consistency across studies. To overcome this

limitation, for a subset of studies, we also make more elaborate guesses about potential

true values of the effect sizes.

3.2 Standard Epidemiology Literature
Hundreds of papers have been published on the short-term health effects of air pollution

in epidemiology, medicine and public health journals. A large fraction of articles rely

on Poisson generalized additive models, which allow to flexibly adjust for the temporal

trend of health outcomes and for non-linear effects of weather parameters. This literature

spans over 20 years and has replicated analyses in a large number of settings, providing

crucial insights on the acute health effect of air pollution.
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To gather a corpus of relevant articles, we use the following search query on PubMed

and Scopus:

’TITLE(("air pollution" OR "air quality" OR "particulate matter" OR "ozone"’,

’OR "nitrogen dioxide" OR "sulfur dioxide" OR "PM10" OR "PM2.5" OR’, ’ "carbon

dioxide" OR "carbon monoxide")’, ’AND ("emergency" OR "mortality" OR "stroke" OR

"cerebrovascular" OR’, ’"cardiovascular" OR "death" OR "hospitalization")’, ’AND

NOT ("long term" OR "long-term")) AND "short term"’

We retrieve the abstracts of 1834 articles. Then, we extract estimates and confidence

intervals from these abstracts using regular expressions (regex). Our algorithm available

online detects phrases such as “95% confidence interval (CI)” or “95% CI” and looks

for numbers directly before this phrase or after and in a confidence interval-like format.

We illustrate the outcome of this procedure (in blue) using one sentence of a randomly

selected article from this literature review (Vichit-Vadakan, Vajanapoom and Ostro 2008):

“The excess risk for non-accidental mortality was 1.3% [95% confidence interval

(CI), 0.8–1.7] per 10 µg/m3 of PM10, with higher excess risks for cardiovascular

and above age 65 mortality of 1.9% (95% CI, 0.8–3.0) and 1.5% (95% CI, 0.9–2.1),

respectively.”

Using this method, we retrieve 2666 estimates from 784 abstracts. We then read these

abstracts and filter out articles whose topic falls outside of the scope of our literature re-

view. The final corpus is thus composed of 668 articles and 2155 estimates. Importantly,

the set of articles considered is limited to those displaying confidence intervals and point

estimates in their abstracts. We also build regex queries to retrieve other information

about the articles such as the air pollutant and health outcome studied, the length of the

study and the number of cities considered.

Based on this subset of articles, we first implement a retrospective power analysis

to evaluate whether a study could recover an effect size equal to half of the obtained

estimate. We carry out this analysis for the 1982 estimates that are statistically significant.

Figure 3 displays the power and exaggeration curves for each result. They describe how

these metrics vary with the hypothetical true effect sizes.

If the true effect size was equal to half of the obtained estimate, 58% of the studies

would have a power below the conventional 80% target used in randomized controlled

trials. The median exaggeration ratio would be 1.3 and type S error would not be an

issue. These figures however hide a lot of heterogeneity across studies. For one quarter

of studies, the exaggeration would be higher than 1.9. We therefore try to apprehend the

sources of this heterogeneity.
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Figure 3: Power and Exaggeration Curves for the Epidemiology Literature.

One study

Median

Notes: Each gray line is a power curve or an exaggeration curve of a statistically significant result published
in the epidemiology literature. The blue lines are the median values. For visual clarity, we drop results for
which exaggeration ratios were too large.

We find that inference issues do not depend on the health outcome and the air pollu-

tant studied. Health science journals appear to be less prone to power issues than other

journals. Researchers seem to be aware that they should work with large sample size as

they often carry out multi-city studies. They also sometimes explicitly state that they

investigate non-accidental mortality causes to increase statistical power since the average

daily count is higher than for more specific death causes. Yet, the proportion of low power

studies has been stagnating since the 2000s, revealing that practices regarding statistical

power have not evolved.

Studying the ability of each study to detect an effect that would be half of the obtained

estimate gives an overview of power issues in this literature. It can however be viewed as

arbitrary. Besides, while our approach enables to study the whole literature, it does not

allow to clearly analyze the type of pollutants and outcomes considered in each study.

As recommended by Gelman and Carlin (2014) and Ioannidis, Stanley and Doucouliagos

(2017), we thus make more informed guesses about potential true effect sizes for a subset

of the literature using results from a meta-analysis. Shah et al. (2015) gathered 54 studies

on the effects of several air pollutants on mortality and emergency admission for stroke.

For each of these studies, we run retrospective power calculations to evaluate their ability
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to retrieve the meta-analysis estimates. 63% of studies in Shah et al. (2015) have a statis-

tical power below 80%. The median exaggeration ratio of statistically significant estimate

is equal to 1.6. Figure 4 plots for each air pollutant, the distribution of the exaggeration

ratios (blue lines) and their medians (orange lines). The median exaggeration varies a

lot by air pollutant, from 1 for PM2.5 up to 13.4 for O3 (the median is not displayed for

visual clarity). More informed guesses about true effect sizes confirm that exaggeration is

common in the standard epidemiology literature.

Figure 4: Distribution of Exaggeration Ratios for Studies in Shah et al. (2015)’s Meta-
Analysis.

Median One study

Notes: Each blue line is the exaggeration ratio of a statistically significant estimate retrieved from Shah et al.
(2015)’s meta-analysis. We use the meta-analysis estimates as true effect sizes in the retrospective power
calculations. Orange lines are the medians. Extreme exaggeration ratios are removed for visual clarity. The
median for O3 is 13.4.

3.3 Causal Inference Literature
For the causal inference literature, an extensive search strategy on Google Scholar, IDEAS,

and PubMed enables to retrieve studies that (i) focus on the short-term health effects of

air pollution on mortality and morbidity outcomes, and (ii) rely on a causal inference

methods4. Appendix A displays the list of the 36 articles that match the search criteria.

For each study, we manually retrieve the method used by the authors, the health outcome

4The very recent literature on the effects of air pollution on COVID-19 health outcomes is excluded to
gather a relatively homogeneous corpus of studies.
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and air pollutant they consider, the point estimate and the standard error of the main

specifications.

To evaluate potential statistical power issues in this literature, we follow the same

approach as for the analysis of the standard epidemiology literature. Figure 5 plots the

power and exaggeration curves for 186 specifications which results are statistically signif-

icant at the 5% level. If the true effect size of each study was equal to half of the obtained

estimate, the median power would be 33% and the median exaggeration ration would be

1.7. Only 11% of studies would have a power greater than 80%. Figure 5 also shows that

there is a wide heterogeneity in statistical power issues among studies. Some of them

are relatively well powered while others can run into large exaggeration issues. For in-

stance, one quarter of studies would, on average, exaggerate the true effect sizes by a

factor greater than 2. This pattern may help explain the very large effect sizes sometimes

observed in the causal inference literature.

Figure 5: Statistical Power and Exaggeration Curves of Causal Inference Studies.

Median

One study

Notes: Each gray line is a power curve or an exaggeration curve of a statistically significant result published
in the causal inference literature. The blue lines are the median values. For visual clarity, we drop results
for which exaggeration ratios were too large.

Then, for the 49 instrumental variable results that are statistically significant and re-

porting the corresponding naive regression results, we can evaluate whether the 2SLS

specifications would recover a true effect closer to that of the naive estimate. Figure 6

displays the distribution of the resulting statistical power and the average exaggeration
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ratio. The median power is equal to 8.4%. This results in very large exaggeration ratios:

half of the studies would exaggerate a true effect of the size of the OLS estimate by a

factor of at least 4.5. Such an inflation of statistically significant estimates could explain

part of the gap between the standard and causal literature. This discrepancy could also

be explained by a combination of omitted variable bias and attenuation bias caused by

classical measurement error in air pollution exposure. It could also come from the fact

that the causal estimands targeted by both strategies are different when treatment effects

are heterogeneous. Such explanations are not mutually exclusive and the lack of power

and inability of the instrumental variables to recover smaller effect sizes remain concern-

ing. In the presence of publication bias, considerable lack of power mechanically causes

substantial exaggeration issues.

Figure 6: Distribution of Power and Exaggeration Ratio for Instrument Variable De-
signs, Assuming that the Naive OLS Estimates Are the True Effect Sizes.

Median One study

Notes: For 49 statistically significant 2SLS estimates, we define the true values of effect size as the cor-
responding OLS estimates. Each blue line represents either the statistical power (%) or the exaggeration
factor of a study’s result. Orange lines are the median of the two metrics. For visual clarity, we do not
display three extreme exaggeration ratios.

4 Approach for the Prospective Analysis
The review of the standard epidemiology and causal literatures shows that a sizable por-

tion of articles produce inflated estimates of the short-term health effects of air pollution.
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This analysis however does not allow us to clearly identify which parameters of a study

influence its statistical power. We therefore implement a prospective analysis to over-

come this limitation (Altoè et al. 2020, Black et al. 2022, for other examples of power

simulations). We run Monte-Carlo simulations based on real-data to emulate the main

empirical strategies found in the literature. We use real data to avoid the difficult task of

modeling the long-term and seasonal variations in health outcomes but also the specific

effects of weather variables such as temperature. This section describes how these simu-

lations are implemented. Before that, we present the causal identification strategies used

to measure the acute health effects of air pollution and then briefly describe the data used

for the simulations.

4.1 Research Designs toMeasure the Short-Term Health Effects of Air
Pollution

Several empirical strategies have been leveraged to estimate the short-term health effects

of air pollution. We simulate the main ones existing in the literature. We consider the

usual setting where data on air pollution, weather parameters, and health outcomes are

at the daily-city level.

Standard regression approach. The standard strategy consists in directly estimating

the dose-response between an air pollutant and an health outcome. In the epidemiology

literature, researchers often rely on Poisson generalize additive models where they regress

the daily count of an health outcome on an air pollutant concentration, while flexibly

adjusting for weather parameters, seasonal and long-term variations. We approximate

the workhorse model used by epidemiologists using linear models estimated via ordinary

least squares:

Yc,t = α + βPc,t + Wc,tλ+ Ctγ + εc,t

where c is the city index and t the daily time index. Yc,t is the daily count of cases of

an health outcome and Pc,t the average daily concentration of an air pollutant and εc,t
an error term. The parameter β captures the short-term effect of an increase in the air

pollutant concentration on the health outcome. To address confounding issues, the model

adjusts for a set of weather covariates, Wc,t, and calendar indicators Ct.

Instrumental variable (IV) approach. The standard strategy could be prone to omitted

variable bias and measurement error. A growing number of articles therefore exploits

exogenous variations in air pollution. Most causal inference papers rely on IV designs
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where the concentration of an air pollutant is instrumented by thermal inversions (Arceo,

Hanna and Oliva 2016), wind patterns (Schwartz, Fong and Zanobetti 2018, Deryugina

et al. 2019), extreme natural events such as sandstorms or volcano eruptions (Ebenstein,

Frank and Reingewertz 2015, Halliday, Lynham and de Paula 2019), or variations in trans-

port traffic (Moretti and Neidell 2011, Knittel, Miller and Sanders 2016, Schlenker and

Walker 2016). This approach can be summarized with a two-stage model where the first

stage is:

Pc,t = δ+θZc,t + Wc,tη + Ctκ+ ec,t

where Zc,t is the instrumental variable. The second stage is then:

Yc,t = α + βP̂c,t + Wc,tλ+ Ctλ+ εc,t

where P̂c,t is the exogenous variation in an air pollutant predicted by the instrument. The

causal effect measured by this approach is a weighted average of per-unit causal responses

to an increase in the concentration of an air pollutant (Angrist and Imbens 1995).

Reduced-form approach. A subset of articles directly estimates the relationship be-

tween the health outcome and exogenous shocks to air pollution. For instance, arti-

cles using this approach exploit public transport strikes or thermal inversion as exoge-

nous shocks (Bauernschuster, Hener and Rainer 2017, Jans, Johansson and Nilsson 2018,

Godzinski, Castillo et al. 2019, Giaccherini, Kopinska and Palma 2021). They estimate a

model of the form:

Yc,t = α + βDc,t + Wc,tλ+ Ctγ + εc,t

where Dc,t is a dummy equal to 1 when city c is affected by a shock at time t and 0

otherwise. The parameter β captures an intention-to-treat effect.

Regression-discontinuity design (RDD) approach. The last empirical strategy found

in the literature measures the effects of air quality alerts with a regression-discontinuity

design (Chen et al. 2018, Anderson, Hyun and Lee 2022). In this approach, the follow-

ing model is estimated for observations within an air pollution concentration bandwidth

around the alert threshold:

Yc,t = α + β1{Pc,t > P
(a)
c }+ Wc,tλ+ Ctγ + εc,t

where P (a)
c is the air pollution alert threshold for city c. We restrict our simulations to the

case of sharp RDD. This model estimates the intention-to-treat effect of air quality alerts.
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It can both capture the effect of a subsequent decrease in air pollution caused by traffic

restriction policies and inhabitants’ avoidance behavior.

4.2 Data
The simulation exercises rely on a subset of the US National Morbidity, Mortality, and

Air Pollution Study (NMMAPS). The dataset is publicly available and has been used in

several major studies in the early 2000s to measure the short-term effects of ambient air

pollutants on mortality outcomes (Peng and Dominici 2008). Specifically, we extract data

at the city-day level for 68 cities over the 1987-1997 period. It corresponds to 4,018

daily observations per city, for a total sample size of 273,224 observations. We select

observations on the average temperature (C°), the standardized concentration of carbon

monoxide (CO), and mortality counts for several causes. We focus on CO as it is the

air pollutant measured in most cities over the period and its concentration is strongly

correlated to that of other pollutants such as particulate matter. Less than 5% of carbon

monoxide concentrations and average temperature readings are missing in the initial data

set. We impute them using the chained random forest algorithm implemented in the

missRanger package (Mayer 2019).

4.3 Simulations Set-Up
General procedure. Our simulation procedure follows 7 main steps:

1. Randomly draw a study period and a sample of cities.

2. For instrumental variable, reduced-form and regression-discontinuity designs, ran-

domly allocate days to exogenous shocks/air quality alerts.

3. Modify the health outcome, adding a treatment effect that we will try to recover.

4. Estimate the model.

5. Store the point estimate of interest and its standard error.

6. Repeat the procedure 1000 times.

7. Compute the proportion of statistically significant estimates at the 5% level (the

power), the average of the absolute value of significant estimates over the true ef-

fect size (the exaggeration ratio), and the proportion of significant estimates of the

opposite sign of the true effect (the probability to make a type S error).
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Modeling assumptions. To only capture the specific issues arising due to low statistical

power, we build our simulations such that (i) they meet all the required assumptions of

empirical strategies and (ii) make it easier—compared to real settings—to recover the

treatment effect. For all research designs, the treatment added to the data is not bi-

ased by unmeasured confounders nor measurement errors. For instrumental variable

and reduced-form strategies, we only simulate binary and randomly allocated exogenous

shocks (e.g. the occurrence of a thermal inversion). For the regression discontinuity ap-

proach, we only model sharp designs where an air quality alert is always activated above

a randomly chosen threshold. The simulations always retrieve on average the true value

of the treatment effect.

Two approaches for simulating research designs. For the reduced-form and regression

discontinuity designs, we follow the Neyman-Rubin causal framework by simulating all

potential outcomes (Rubin 1974). Consider that the health outcome value recorded in

the NMMAPS dataset corresponds to the potential outcome Yc,t(0). To create the coun-

terfactuals Yc,t(1), we add a treatment effect drawn from a Poisson distribution whose

parameter corresponds to the magnitude of the treatment. We then randomly draw the

treatment indicators Tt,c for exogenous shocks or air quality alerts. For reduced-form

strategies, the treatment status of each day is drawn from a Bernoulli distribution with

parameter equal to the proportion of exogenous shocks desired. For air pollution alerts,

we randomly draw a threshold from a uniform distribution and select a bandwidth such

that it yields the desired proportion of treated observations. We finally express the ob-

served values Yobs of potential outcomes according to the treatment assignment: Yobsc,t =

(1-Tc,t)×Yc,t(0) + Tc,t×Yc,t(1).

To simulate standard regression and the instrumental variable strategies, we rely on a

model-based approach. For the standard regression strategy, we first estimate the follow-

ing statistical model on the data:

Yc,t = α + βZc,t + Wc,tλ+ Ctγ + εc,t

We then predict new observations of a Yc,t using the estimated coefficients of the model

(β̂, λ̂, and γ̂) and by adding noise drawn from a normal distribution with variance equal

to that of the residuals ε̂c,t (Peng, Dominici and Louis 2006). We modify the slope of the

dose-response relationship by changing the value of the air pollution coefficient β. For

the instrumental variable strategy, we use the same method as for the standard regres-

sion approach but first modify observed air pollutant concentrations Pc,t according to the

desired effect size θ of the randomly allocated instrument:
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P̃c,t = Pc,t +θZc,t

We draw the allocation of each day to an exogenous shock from a Bernoulli distribu-

tion with parameter equal to the proportion of exogenous shocks. We then estimate a

two-stage least squares model (2SLS) and modify the coefficient for the effect of the air

pollutant on an health outcome. We finally generate the fake observations of the health

outcome by combining the prediction from the modified 2SLS model and noise drawn a

normal distribution with variance equal to that of the residuals.

Varying parameters. To understand which parameters affect statistical power issues,

we modify one aspect of the research design while keeping other parameters constant.

We study the influence of four main parameters. First, we vary the sample size by draw-

ing a different number of cities and changing the length of the study period. Second, we

consider different effect sizes of air pollution or of an exogenous shock on the health out-

come. Third, we allocate increasing proportions of exogenous shocks/air quality alerts.

Fourth, we vary the number of cases in the outcome by considering different health out-

comes.

Simulations of Case Studies. The simulations described above help explore the effect of

each parameter on statistical power issues. Yet, the resulting set of parameters considered

may not be perfectly representative of actual studies. To address this concern, we also

calibrate simulation parameters to reproduce three papers published in the literature.

We report these analyzes in Appendix C.

5 Results of the Prospective Analysis
In this section, we describe how statistical power evolves with the treatment effect size,

the number of observations, the proportion of exogenous shocks, the average count of the

health outcome, and the strength of the instrument. In Appendix C, we show that statis-

tical power issues can be substantial for actual parameter values found in the literature.

5.1 Evolution of Power, Exaggeration Ratio and Type S Error with Study
Parameters

We aim to analyze how statistical power, exaggeration ratio and type S error are affected

by the value of different study parameters. To do so, we set baseline values for these
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parameters and vary the value of each of them one by one. This enables us to get a sense

of the impact of each parameter, other things held equal. We consider the following

baseline parameters:

• A large sample size of 100,000 observations (2500 days × 40 cities),

• A 1% effect size, the order of magnitude found in the most precise studies of the

literature. A one standard deviation in air pollution or an exogenous shock increases

the health outcome by 1%,

• 50% of observations are subject to an exogenous shock. For air pollution alerts

analyzed with regression discontinuity designs, we only consider observations close

to the threshold, resulting in a smaller proportion of treated units: 10%,

• The health outcome is the total daily number of non-accidental deaths. It is the

health outcome with the largest average number of counts (average daily mean of

23 cases).

For all statistical models, we adjust for temperature, temperature squared, city and cal-

endar (weekday, month, year, month×year) fixed effects. We also repeat the simulations

for a smaller sample size of 10,000 observations.

Sample Size

In Figure 7, we recover the well-known increasing relationship between the number of

observations and statistical power. Conversely, the exaggeration ratio decreases with the

number of observations.

This results stems from the fact that statistical power increases and exaggeration de-

creases when the variance of a normally distributed estimator decreases (Zwet and Cator

2021, Lu, Qiu and Deng 2019). Now, the variance of usual estimators decreases with the

number of observations. Then, the relationships between number of observation, power

and exaggeration.

We also find that statistical power and exaggeration issues can arise even for a large

number of observations. For a sample size of 40,000 observations, the instrumental vari-

able strategy only has a statistical power of 54% and exaggerates the true effect by a fac-

tor of 1.4. On the contrary, the standard regression strategy is much less prone to power

issues than the instrumental variable strategy. This is explained by the fact that the vari-

ance of the two stage least-square estimator is larger than the variance of the ordinary

least square estimator. In our simulations, the probability to make a Type S error is null

for all identification methods and sample sizes.
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Figure 7: Evolution of Power and Exaggeration with Sample Size.

40 cities

10 cities

Notes: The other parameters are set to their baseline values: a true effect size of 1%, 50% of observations
subject to an exogenous shock for instrumental variable and reduced-form designs, and the health outcome
is the total number of non-accidental deaths.

Effect Size

In Figure 8, we retrieve another familiar result: the larger the effect size, the larger the

power. As expected from Zwet and Cator (2021) and Lu, Qiu and Deng (2019)’s results,

we also find that the exaggeration ratio decreases with the true effect size. Even for our

large baseline sample size, statistical power issues appear for effect sizes routinely found

in the epidemiology literature. For instance, for our instrumental variable strategy and an

effect size of 0.5%, the average exaggeration ratio is about 1.7. As for results on sample

sizes, standard regression and reduced-form strategies are less prone to power issues,

even for small effect sizes.

Proportion of Exogenous Shocks

The link between the proportion of exogenous shocks and statistical power might be less

widely known. In Figure 9, we show that statistical power increases with the proportion
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Figure 8: Evolution of Power and Exaggeration with Effect Size.

Notes: The sample size is 10,000. The other parameters are set to their baseline values: 50% of observations
subject to an exogenous shock for instrumental variable and reduced-form designs, and the health outcome
is the total number of non-accidental deaths. For an effect size of 1%, we do not display the exaggeration
ratio of the instrumental variable design since it is above 20 and it would distort the graph.

of treated units for instrumental variable, regression discontinuity and reduced-form de-

signs. Conversely, the average exaggeration ratio increases as the proportion of exogenous

shocks decreases.

This result can be explained by the fact that exaggeration increases and statistical

power decreases with the variance of the estimator (Zwet and Cator 2021, Lu, Qiu and

Deng 2019). Now, as routinely discussed for randomized controlled trials but seldom in

the case of non-experimental studies, precision is maximized when half of the observa-

tions are exposed to the treatment of interest. The variance of the average treatment effect

estimator (ATE) is σ2/[n×p(1−p)] where σ is the standard deviation of the outcome in the

treated and control groups and p the proportion of treated units. This quantity increases

when p departs from 0.5. Thus, exaggeration increases when the proportion of exogenous

shocks decreases, as long as it was initially smaller than 0.5.

Another way to interpret this result is to consider that a small number of exogenous
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Figure 9: Evolution of Power and Exaggeration with the Proportion of Exogenous
Shocks.

N = 10,000

N = 100,000

Notes: The other parameters are set to their baseline values: a true effect size of 1% and the health outcome
is the total number of non-accidental deaths. The proportion of exogenous shocks corresponds to the
fraction of days in the sample that are allocated to the treatment.

shocks limits the variation that can be leverage to identify the effect of interest. When

the proportion of shocks decreases, the variance of the treatment variable decreases and

therefore the variance of the estimator increases. A similar reasoning can be applied to

IV strategies.

In practice, air pollution alerts, thermal inversion or transportation strikes are gener-

ally rare events. In some studies, they represent less than 5% of the observations. With

a dataset of 10,000 observations, our simulations return an average exaggeration ratio

of 2.7 for the reduced-form strategy. Despite large sample sizes, air pollution studies

exploiting few exogenous shocks might be particularly prone to exaggeration issues.

Average Count of Cases of the Health Outcome

Subgroup analyses are routinely carried out in the literature to evaluate the acute health

effects of air pollution on children or the elderly. Yet, the average count of cases can also
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Table 2: Evolution of Power and Exaggeration with the Average Number of Daily
Cases of Health Outcomes.

Non-Accidental Respiratory COPD

Number of Cases 23 2 0.3
Statistical Power (%) 90 16 7.5
Exaggeration Ratio 1 2.4 5.9

Notes: This table displays the average number of cases, the power and the
exaggeration ratio for three health outcomes: non-accidental deaths, respi-
ratory deaths, and chronic pulmonary deaths for individuals aged between
65 and 75. These figures are obtained for the instrumental variable design
with a sample size of 100,000 and 50% of observations subject to an exoge-
nous shock. The instrument variable increases the air pollutant concentra-
tion by 0.5 standard deviation. A one standard deviation increase in the in-
strumented air pollutant leads to 1% relative increase in the health outcome
considered.

critically affect statistical power as shown in Table 2. For instance, in a setting with only

few deaths per day, a 1% increase in the number of deaths will rarely cause additional

deaths. The effect will be more difficult to detect. To simulate situations with various

number of cases, we consider three different outcome variables, with different counts of

cases: the total number of non-accidental deaths (daily mean ' 23), the total number of

respiratory deaths (daily mean ' 2) and the number of chronic obstructive pulmonary

disease (COPD) cases for individuals aged between 65 and 75 (daily mean ' 0.3). Using

baseline parameters and in the case of the large dataset, we find that statistical power is

close to 100% for a 1% increase in the total number of non-accidental deaths. However,

statistical power drops when the average count of cases decreases. For instance, the in-

strumental variable strategy has only 16% of statistical power to detect a 1% increase in

respiratory deaths. The average exaggeration ratio is then equal to 2.4. For chronic ob-

structive pulmonary deaths—the health outcome with the lowest number of cases—the

situation is even worst since the average exaggeration ratio reaches 5.9. When focusing

on subgroups such as children or the elderly, one can expect to find larger effect sizes

as those populations are more vulnerable to air pollution. While these larger effect sizes

attenuate exaggeration concerns, the lower number of cases exacerbates them. It creates

a trade-off for power issues.

Issues Specific to the Instrumental Variable Design

In the case of instrumental variable strategies, statistical power is affected by the strength

of the instrument. In our simulations, we consider a binary instrument (e.g., the occur-

rence of a thermal inversion or a public transport strike). We define its strength as the
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standardized effect size of the instrument on the air pollutant concentration. A strength

of 0.2 means that the instrument increases the concentration by 0.2 standard deviation.

Figure 10: Evolution of Power and Exaggerationwith the Strength of the Instrumental
Variable.

N = 100,000

N = 10,000

Notes: The true effect size is a 1% relative increase in the health outcome. The health outcome used in the
simulations is the total number of non-accidental deaths. Half of the observations are exposed to exogenous
shocks. The strength of the instrumental variable is defined as its effect in standard deviation on the air
pollutant concentration.

As shown in Figure 10, we find that statistical power collapses and exaggeration soars

when the instrument’s strength decreases. Importantly, this issue even arises for large

first-stage F-statistics. In our simulations based the large data set with 100,000 obser-

vations, an instrumental variable’s strength of 0.2, and an effect size of 1%, we find an

average F-statistics of 1278. The statistical power is however only 23% and the average

exaggeration ratio 2. A large F-statistic could therefore hide large exaggeration issues.

The relationship between IV strength and exaggeration comes from the fact that the

variance of the 2SLS estimator decreases with the correlation between the instrument

and the instrumented variable. In the homoskedastic case, the asymptotic variance of

the 2SLS estimator is
(
E[XZ ′]E[ZZ ′]−1

E[ZX ′]
)−1

σ2, where σ2 is variance of the error,

X the endogenous variable and Z the instrument. When E[XZ ′] and E[ZX ′] decrease,

the variance of the estimator increases. Again, since Zwet and Cator (2021) and Lu, Qiu

and Deng (2019) show that as the variance of a normally distributed estimator increases,

the statistical power decreases and exaggeration increases, we obtain the intuition for the

simulation results.
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6 Discussion
Growing evidence shows the existence of statistical power issues and publication bias

towards statistical significance in economics, causing exaggeration (Brodeur et al. 2016,

Ioannidis, Stanley and Doucouliagos 2017, Brodeur, Cook and Heyes 2020, Ferraro and

Shukla 2020). Although this issue appears to be increasingly acknowledged, discussions

about the drivers of low power and therefore actionable guidance to tackle it in non-

experimental economic research are still lacking (Altoè et al. 2020, Black et al. 2022). In

this paper, we highlighted a list of concrete drivers of power and exaggeration we should

pay attention to when carrying a study on the short-term health effects of air pollution. In

the present section, we first discuss how this list could translate to other contexts before

proposing a principled workflow to assess if and understand why an estimate could be

inflated.

While the simulations we ran were specific to studies on the acute health effect of

air pollution, we argue that they can provide lessons for other types of non-experimental

studies. First, a large literature investigates the short-term impacts of air pollution on dif-

ferent outcomes such as criminality, cognitive skills and productivity (Herrnstadt et al.

2021, Ebenstein, Lavy and Roth 2016, Adhvaryu, Kala and Nyshadham 2022, for in-

stance). These studies use data with a very similar structure, only focusing on different

outcomes and find effects of comparable magnitude or smaller than those in our liter-

ature of interest. Our results should therefore directly carry to these literatures. More

broadly, settings with typically low signal-to-noise ratios can by definition be subject to

power and exaggeration issues. Since as described in Section 5, the impact of each driver

we identified can be explained theoretically, we expect these drivers to affect power and

exaggeration in other settings as well. A limited effect size, effective sample size, num-

ber of exogenous shocks, average count of the outcome or strength of the instrument can

create exaggeration in many settings. To avoid exaggeration issues when running a non-

experimental study, we thus recommend to particularly pay attention to these factors.

In addition to these specific factors, when carrying out a study, we recommend to

systematically run retrospective calculations to gauge the risk of exaggeration. They are

easy to implement and force us to discuss credible effect size. They allow to evaluate

if our research design enables us to confidently estimate a credible range of effect sizes.

We implemented and discussed such calculations in our literature review and illustrate

this approach in more details in Appendix B by considering the example of Deryugina

et al. (2019). As an even simpler first check, we also suggest to consider large confidence

intervals verging 0 not only as a sign of uncertainty regarding the exact magnitude of the
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effect but also of limited power and potential exaggeration of the obtained point estimate.

Then, we recommend conducting prospective simulations before undertaking a non-

experimental study. It allows to verify whether our design can detect effects of a credi-

ble magnitude in an almost-ideal setting. Unlike a retrospective analysis, enables us to

identify factors that drive exaggeration. Fake-data can be simulated from scratch or sim-

ulations can build on datasets used in other studies, as we did in the simulation section

of this paper. To facilitate the adoption of this practice, we describe the template we use

to run our simulations in the replication material. Black et al. (2022) also provide useful

recommendations to implement power simulations.

More generally, we advocate for paying attention to statistical power in non-experimental

studies, even after we obtain a statistically significant estimate, as insufficient power can

lead to exaggeration and inaccurate published estimates. As such, we recommend re-

porting power calculations to demonstrate the robustness of the design and its ability to

accurately capture smaller effect sizes.

On top of these specific recommendations, we should not forget that published es-

timates only suffer from exaggeration in the presence of publication bias. The causal

inference literature would therefore benefit from adopting a different view towards sta-

tistically insignificant results (Ziliak and McCloskey 2008, Wasserstein and Lazar 2016,

McShane et al. 2019). It currently dichotomizes evidence according to the 5% significance

threshold, disregarding non-significant results (Greenland 2017). Instead, if results were

published regardless of their significance, the resulting distribution would be centered

around the true effect (Hernán 2022). To replace the null hypothesis testing framework,

we recommend to focus on confidence intervals and to interpret the range of effect sizes

supported by the data (Amrhein, Trafimow and Greenland 2019, Romer 2020). Quali-

fying estimates as "statistically significant" does not acknowledge the actual uncertainty

that should be computed and embraced to better help policy-makers. Prospective and

retrospective power analyses can help design better studies and improve the interpreta-

tion of their results.
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A List of Studies Included in the Causal Inference Litera-
ture

We display below studies included in the retrospective analysis of the causal inference

literature. We group them by research designs:

Instrumental Variable Design: Moretti and Neidell (2011), Ebenstein, Frank and Reingew-
ertz (2015), Schwartz et al. (2015), Arceo, Hanna and Oliva (2016), He, Fan and Zhou
(2016), Knittel, Miller and Sanders (2016), Schlenker and Walker (2016), Sheldon and
Sankaran (2017), Schwartz, Bind and Koutrakis (2017), Zhong, Cao and Wang (2017),
Barwick et al. (2018), Hanlon (2018), Schwartz, Fong and Zanobetti (2018), Halliday,
Lynham and de Paula (2019), Deryugina et al. (2019), Cheung, He and Pan (2020), Fan
and Wang (2020), He, Liu and Zhou (2020), Giaccherini, Kopinska and Palma (2021),
Godzinski and Suarez Castillo (2021), Guidetti, Pereda and Severnini (2021), Kim (2021),
Liu and Ao (2021), Xia et al. (2022)

Reduced-Form Design: Bauernschuster, Hener and Rainer (2017), Jans, Johansson and
Nilsson (2018), Jia and Ku (2019), Godzinski, Castillo et al. (2019)

Regression Discontinuity Design: Chen, Guo and Huang (2018), Fan, He and Zhou
(2020), Anderson, Hyun and Lee (2022)

Event-Study Design: Mullins and Bharadwaj (2015), Simeonova et al. (2021)

Matching Design: Baccini et al. (2017), Forastiere, Carugno and Baccini (2020)

B Implementing a Retrospective Power Analysis
We explain here how we can easily implement a retrospective power analysis once a study

is completed. In a flagship publication, Deryugina et al. (2019) instrument PM2.5 con-

centrations with wind directions to estimate its effect on mortality, health care use, and

medical costs among the US elderly. They gathered 1,980,549 daily observations at the

county-level over the 1999–2013 period; it is one of the biggest sample sizes in the litera-

ture. When the authors instrument PM2.5 with wind direction, they find that “a 1 µg/m3

(about 10 percent of the mean) increase in PM2.5 exposure for one day causes 0.69 addi-

tional deaths per million elderly individuals over the three-day window that spans the

day of the increase and the following two days”. The estimate’s standard error is equal

to 0.061. In Figure B.1, we plot the statistical power, the inflation factor of statistically
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significant estimates and the probability that they are of the wrong sign as a function of

hypothetical true effect sizes.

Figure B.1: Power, Type M and S Errors Curves for Deryugina et al. (2019).

Notes: In each panel, a metric, such as the statistical power, the exaggeration ratio or the probability to
make a type S error, is plotted against the range of hypothetical effect sizes. The "IV" label represents
the value of the corresponding metric for an effect size equal to Deryugina et al. (2019)’s two-stage least
square estimate. The "Epidemiology" label stands for the estimate found in Di et al. (2017), which is the
epidemiology article most similar to Deryugina et al. (2019). The " Naive OLS" label corresponds to the
estimate found by Deryugina et al. (2019) when the air pollutant is not instrumented.

The estimate found by Deryugina et al. (2019) represents a relative increase of 0.18%

in mortality. We labeled it as "IV" in Figure B.1. Is this estimated effect size large com-

pared to those reported in the standard epidemiology literature? We found a similar

article to draw a comparison. Using a case-crossover design and conditional logistic re-

gression, Di et al. (2017) find that a 1 µg/m3 increase in PM2.5 is associated with a 0.105%

relative increase in all-cause mortality in the Medicare population from 2000 to 2012.

The effect size found by Deryugina et al. (2019) is larger than this estimate labeled as

"Epidemiology" in Figure B.1. If the estimate found by Di et al. (2017) was actually the

true effect size of PM2.5 on elderly mortality, the study of Deryugina et al. (2019) would

have enough statistical power to perfectly avoid type M and S errors. Now, suppose

that the true effect of the increase in PM2.5 was 0.095 additional deaths per million el-

derly individuals—the estimate the authors found with a "naive" multivariate regression

model. The statistical power would be 34%, the probability to make a type S error could

be null but the exaggeration factor would be on average equal to 1.7. Even with a sample

size of nearly 2 million observations, Deryugina et al. (2019) could make a non-negligible

type M error if the true effect size was the naive ordinary least square estimate. Yet,
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the authors could argue that their instrumental variable strategy leads to a higher effect

size as it overcomes unmeasured counfounding bias and measurement error. Besides,

for effect sizes down to 0.182 additional deaths per million elderly individuals (a 0.05%

relative increase), their study has a very high statistical power and would not run into

substantial type M error. A retrospective analysis is thus a very convenient way to think

about the statistical power of a study to accurately detect alternative effect sizes.

C Case Studies
The main simulation results help understand how the various parameters influence the

statistical power of studies. Yet, these parameters may not perfectly represent actual stud-

ies as we made several conservative assumptions: relatively large sample size, proportion

of treated units, average outcome counts and instrumental variable strength. For each

research design, we therefore consider a realistic set of parameters based on an example

from the literature. We then vary the value of key parameters. As we are working with

different data, we cannot exactly reproduce the level of precision found in the articles

considered. Our goal is not to claim that the estimates produced by a particular article

are inflated, but instead to understand how low power issues could arise for representa-

tive parameter values.

Public Transportation Strikes
Public transportation strikes are unique but rare positive shocks to air pollution as indi-

viduals use their cars to reach city centers. Even in a large data set, with several cities and

a long study period, the proportion of affected days might be very small. For instance,

Bauernschuster, Hener and Rainer (2017) investigate the effect of public transportation

strikes on air pollution and emergency admission in the five biggest German cities over a

period of 6 years. Despite a sample size of 11,000, there are only 57 1-day strikes during

the study period (0.5% of days are actually treated). The authors find that children hos-

pitalizations for breathing issues increase by 34% (SE=8%) on strike days. On average,

0.22 children per day go to the hospital for breathing issues.

We simulate a similar design with our own data. We first randomly sample 2200

observations for five cities and then vary (i) the proportion of exogenous shocks from

0.5% up to 10%, and (ii) the treatment effect size from a 4% increase up to a 34% increase.

We focus on elderly mortality due to chronic obstructive pulmonary disease since it has

an average daily count of 0.29 cases.
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Figure C.2: Evolution of Power and Exaggeration for Public Transportation Strikes
Designs.

Similar 
precision to 

the study

Notes: Each panel displays the average value of a metric (power, exaggeration, and standard error) for
varying proportions of exogenous shocks and effect sizes. The average standard error of simulations is the
raw standard error divided by the mean number of cases of the health outcome. For each combination of
parameters, we ran 1000 simulations.

In Figure C.2, we display our simulation results. The first panel from the left shows

that both large effect sizes and a large proportion of exogenous shocks are required to

reach adequate power. In the middle panel, we show that a proportion of 0.5% of exoge-

nous shocks is associated with very large exaggeration ratios, from 2.2 for a true effect

size of 34% up to 14 for one of 4%. Power issues fade for a combination of a proportion of

exogenous shocks above 5% and effect sizes above 17%. In the right panel, we plot the av-

erage standard error of the estimates, expressed as a fraction of the average of the health

outcome. The standard error of Bauernschuster, Hener and Rainer (2017)’s is 8%. In our

simulations, we recover that specific precision for a proportion of exogenous shocks of

5%. In that case, a true effect size of 34% would not yield inflated estimates. However, if

effect sizes are actually smaller and more representative of those found in the literature,

the exaggeration would be consequential.

This simulation exercise shows that exaggeration is likely to arise in practice since the

proportion of exogenous shocks is low. It occurs even when true effect sizes are relatively

large.

Air Pollution Alerts
Air pollution alerts are also rare events. Their effects are estimated using regression

discontinuity designs that restrict the analysis to observations closed to the air quality
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threshold. As a consequence, the effective sample size may be particularly small. For

instance, Chen et al. (2018) investigate the effects of air quality alerts on emergency de-

partment visits in Torento, over the 2003-2012 period. While the nominal sample size is

3652, the effective one is only 143 (100 control days and 43 treated days). Only 1.2% of

observations are treated. The authors find that eligibility to air quality (the intention-to-

treat effect) approximately reduces emergency visits for asthma by 8% (SE=3.8%). The

average daily count of cases of their health outcome is 26.

We approximate the setting of Chen et al. (2018) using our data. We first sample one

city for a time period of 3652 days and randomly allocate the treatment. We then repeat

the process varying the proportion of alerts and effect sizes. Our outcome variable is the

total number of non-accidental deaths since it has a daily mean of 23.

Figure C.3: Evolution of Power and Exaggeration for Air Quality Alerts Designs.

Similar 
precision to 

the study

Notes: Each panel display the average value of a metric (power, exaggeration, and standard error) for vary-
ing proportions of exogenous shocks and effect sizes. The average standard error of simulations is the
raw standard error divided by the mean number of cases of the health outcome. For each combination of
parameters, we ran 1000 simulations.

Figure C.3 displays the simulations results. As in Figure C.2, a combination of large

effect sizes and many air quality alerts is needed to avoid low power issues. We get a

precision similar to Chen et al. (2018) for a proportion of air quality alerts of 3%. For an

effect size of 4%, the average exaggeration ratio is equal to 2.6. In that case, the average

average of statistically significant estimates is 10%, which is similar to the effect size

found by Chen, Guo and Huang (2018).

Unless true effect sizes are very large, air quality alert designs produce inflated esti-

mates in realistic settings.
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Instrumenting Air Pollution
Finally, we investigate the most commonly used strategy in the causal inference litera-

ture, the instrumental variable design. Several studies rely on very large datasets and

exploit changes in weather patterns as sources of exogenous variations. For instance,

Schwartz, Fong and Zanobetti (2018) instrument PM2.5 concentration with planetary

boundary layer, winds speed, and air pressure. Once the effects of seasonal and other

weather parameters are accounted for, the combination of their instruments explains 18%

of the variation in PM2.5 concentration. They find that a 10 µg/m3 increase in PM2.5 leads

to a 1.5% (SE=0.22%) increase in daily non-accidental mortality. There are on average 23

daily deaths in their dataset of 591,570 observations (135 cities with a length of study of

approximately 4382 days).

In our simulations, we assess how the strength of the instrumental variable affects

power issues for several health outcomes. We consider a binary instrumental variable

and vary its effect on air pollution concentration from a 0.1 to a 0.5 standard deviation

increase. The 18% correlation in Schwartz, Fong and Zanobetti (2018) corresponds to a

0.4 standard deviation increase in our case (Lipsey and Wilson 2001). We assume that half

of the observations are exposed to exogenous shocks. We set an effect size correspond-

ing to a 1.5% relative increase in three health outcomes with different average number

of cases: non-accidental mortality (mean cases of 23), respiratory mortality (mean of 2),

and chronic obstructive pulmonary mortality of elderly (mean of 0.3). Our data set being

smaller than the one used in Schwartz, Fong and Zanobetti (2018), we only run simula-

tions for a sample size of 100,000.

In Figure C.4, we see in the top-left panel that power reaches satisfactory level for

large instrumental variable strengths but only for non-accidental causes. For respira-

tory and elderly mortality, exaggeration can be substantial even for large IV strength.

While our sample size is large, it is smaller than the one in Schwartz, Fong and Zanobetti

(2018). As a consequence, our simulations only have a precision close to theirs for an

instrumental variable strength of 0.5 and non-accidental mortality. Yet, our simulations

highlight that important exaggeration issues can arise in realistic settings, even for large

IV strength. The bottom-right panel of Figure C.4 confirms the result found in the sim-

ulations of the previous section: a large first stage F-statistic can be a poor indicator of

statistical power issues. For instance, for non-accidental mortality and an IV strength of

0.1, the F-statistic is equal to 320 but the exaggeration factor is 2.6, with an associated

power of 16%. Importantly, as the F-statistic does not vary with the number of cases in

the outcome it can all the more hide important power issues.
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Figure C.4: Evolution of Power and Exaggeration for Instrumental Variable Designs.

Similar precision 
to the study

Notes: Each panel display the average value of a metric (power, exaggeration, standard error, and first-stage
F-statistic.) for varying proportions of exogenous shocks and effect sizes. The average standard error of
simulations is the raw standard error divided by the mean number of cases of the health outcome. For each
combination of parameters, we ran 1000 simulations.
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