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Abstract

The credibility revolution in economics has made causal inference methods ubiquitous. Simulta-
neously, an increasing amount of evidence highlights that the literature strongly favors statistically
significant results. I show that these two phenomena interact in a way that can substantially worsen
the reliability of published estimates: while causal identification strategies alleviate bias caused by
confounders, they reduce statistical power and can create another type of bias—exaggeration—
when combined with selection on significance. This is consequential in fields such as environmental
economics, as estimates turn into decision-making parameters for policy makers conducting cost-
benefit analyses. I characterize this confounding-exaggeration trade-off theoretically and using
realistic Monte Carlo simulations replicating prevailing identification strategies and document it
in an example literature. I then discuss potential avenues to address this issue.
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Causal Exaggeration

I Introduction

One of the main challenges of empirical economics is identifying causal effects. Identifica-
tions strategies such as Regression Discontinuity (RD), Instrumental Variables (IV), Difference-
in-Differences (DiD) and event studies help us achieve this goal. To do so, these strategies only
use part of the variation in the data. They exploit the exogenous part of the variation in the
treatment or decrease the sample size by only considering observations for which the as-if random
assignment assumption is credible. This reduction in the variation used can decrease precision
and thus statistical power—the probability of rejecting the null hypothesis when it is false, or
put simply, the probability of obtaining a statistically significant estimate. There is, therefore, a
tension between reducing confounding and statistical power.

When statistical power is low, not only is the estimator imprecise but statistically significant
estimates exaggerate the true effect size (Ioannidis 2008, Gelman and Carlin 2014, Lu et al. 2019,
Zwet and Cator 2021). Only estimates at least 1.96 standard errors away from zero are statistically
significant at the 5% level. In under-powered studies, these estimates make up a selected sub-
sample of all estimates, located in the tails of the distribution of all possible estimates. The
average of these statistically significant estimates differs from the true effect, located at the center
of the distribution if the estimator is unbiased. They exaggerate the true effect and the less precise
the estimator, the larger exaggeration is. Figure 1 illustrates the inflation of significant estimates
caused by imprecision. When power is low, obtaining a statistically significant estimate from an
unbiased estimator does not guarantee that it will be close to the true effect. An estimator β̂ of
the true effect β might be unbiased in the traditional sense of E[β̂] = β but conditionally biased
in the sense that E[β̂| Significant] ̸= β. For statistically significant estimates, the tension between
statistical power and reducing confounding is thus a tension between reducing confounding and
exaggerating the true effect size.

Yet, exaggeration only arises under two conditions: 1) a publication bias favors statistically
significant results and 2) statistical power is low. A large body of literature has shown that the
economics literature selects results based on statistical significance (Rosenthal 1979, Andrews and
Kasy 2019, Abadie 2020, Brodeur et al. 2020, for instance). Additional studies have highlighted
its frequent and substantial lack of statistical power and resulting exaggeration (Ioannidis et al.
2017, Ferraro and Shukla 2020). Even in experimental economics, with a high level of control and
an arguable absence of confounders, studies from top economics journals failed to replicate, the
original estimates being on average inflated by a factor of at least 1.5 (Camerer et al. 2016). In
the non-experimental economics literature, where statistical power is rarely a central consideration
under current practices, several meta-analyses provide evidence of consequential exaggeration.
Ioannidis et al. (2017) finds that the median statistical power in a wide range of areas of economics

Page 2



Causal Exaggeration

Figure 1 – Significance and distribution of two unbiased estimators with different variances

Significant estimates

Non significant estimates

Mean of significant estimatesTrue effect

Notes: 100,000 draws from two normal distributions N (1, 0.05) and N (1, 0.5).

is no more than 18%. Despite the widespread use of convincing causal identification strategies
and usually large sample sizes, they show that nearly 80% of estimates are likely exaggerated by
a factor of two. In environmental economics, using a more conservative approach, Ferraro and
Shukla (2020) finds that 56% of estimates are exaggerated by a factor of two or more. In the
present paper, I provide evidence of exaggeration in a subfield of this literature, that on the acute
health effects of air pollution. I further expand this analysis in a companion paper (Bagilet 2023).
The magnitude of exaggeration is thus considerable and in some situations could be on par with
that of a bias caused by confounders, as illustrated in section II. It is therefore crucial to take
exaggeration into account and to understand its drivers.

Accurate point estimates are instrumental as they often inform policy decisions through Cost-
Benefit Analyses (CBA). For instance, environmental economics estimates enter the computation
of the Social Cost of Carbon or routinely help policy makers decide of the implementation of
regulations. Yet, the underlying effects can be relatively small and thus difficult to capture,
making the studies subject to exaggeration. Estimates of the impact of environmental regulations
on job losses constitute a good example (Gray et al. 2023). For instance, Walker (2011) documents
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the impact of the Clean Air Act amendments of 1990 on employment and finds an effect of -
14.2% (s.e. 4.3). For similar policies, other studies find smaller effects, of the order of magnitude
of -3% (Greenstone 2002, Gray et al. 2023). The design of Walker (2011) would not be precise
enough to retrieve an effect size of this magnitude. If the true effect was in fact of this magnitude,
the statistical power of the study would be 11% and significant estimates would exaggerate the
true effect by a factor of 3.5 on average. In this example, bias caused by exaggeration would be
substantial, as could be detrimental policy implications.

In this paper, I argue that the use of causal identification strategies contributes to exaggeration.
Reviewing a literature and using a mathematical derivation along with Monte Carlo simulations, I
show that design choices in quasi-experimental studies can be seen as a trade-off between avoiding
confounding and overestimating true effect sizes due to a resulting loss in power. To limit the threat
of confounding, causal inference methods discard variation and therefore reduce statistical power.
When combined with a statistical significance filter, this results in exaggeration bias. While causal
identification strategies are essential to describe causal relationships, this paper emphasizes that
a perfectly convincing identification does not guaranty an absence of “bias” and that improving
identification can actually pull us away from the true effect. The same strategies which remove
the bias caused by confounding factors actually introduce another type of bias.

All causal identification strategies discard variation in order to identify causal effects but the
confounding-exaggeration trade-off is mediated through a distinctive channel for each of them.
RD designs discard part of the variation by only considering observations within the bandwidth,
decreasing the effective sample size and thus precision, even if the initial sample size was large. An
IV strategy only uses the subset of the variation in the treatment that is explained by the instru-
ment. In studies leveraging exogenous shocks, the variation used to identify an effect sometimes
only comes from a limited number of changes in treatment status. Approaches that do not actually
leverage natural experiments but aim to identify a causal effect by controlling for confounders also
limit the variation used. Matching prunes units that cannot be matched and thus reduces the
effective sample size. Adding controls or fixed effects to the model can increase the variance of
the estimator and exaggeration if they absorb more of the variation in the treatment than in the
outcome variable.

Since causal identification strategies can be interpreted as ways of controlling for confounders,
this last point actually ties all the strategy-specific arguments together. Fixed Effects (FEs)
based identification strategies such as DiD control for the invariant, unobserved, and arguably
endogenous part of the variation in the outcome. An IV approach essentially partials out the
variation in x unexplained by the instruments. Fuzzy-RD and propensity score matching can be
thought of as control function approaches, of the forcing variable and propensity score respectively.
In addition, excluding observations that are outside the bandwidth or unmatched is equivalent to
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controlling for observation-level fixed effects for these observations. When these identification
strategies absorb more of the variation in the treatment than in the outcome, they increase the
variance and can cause exaggeration. Considering a simple linear homoskedastic model gives
the intuition for this trade-off between exaggeration and omitted variable bias (OVB) for control
approaches. Let yi = α+βxi+δwi+ui, ∀i ∈ {1, .., n}, with x the variable of interest, w a potentially
unobserved variable correlated with x and u an error term. Under usual assumptions and using
the Frisch-Waugh-Lovell theorem, we get that σ2

β̂ovb
and σ2

β̂ctrl
, the variance of the estimators for

β when omitting w (short regression) and controlling for it (long regression) are respectively:
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Controlling for w will increase the variance of the estimator if the fraction of the variance
unexplained by w is greater for y⊥x than for x. Put differently, if controlling absorbs more of the
variation in x than in the residual part of y (y⊥x), it will increase the variance of the estimator. As
briefly discussed above, since exaggeration increases with the variance of the estimator, controlling
for a confounder can increase exaggeration. I develop a formal proof showing that bias resulting
from exaggeration can be larger when controlling, even when accounting for confounders, in section
III.

In the remainder of the paper, I first document the magnitude of the trade-off. To do so, I focus
on an example literature, that of the short term health effects of air pollution. I further expand
this analysis in a companion paper (Bagilet 2023). In the present paper, I first document evidence
of selection on significance and exaggeration in causal studies from this literature. In particular, I
show that less precise studies report larger standardized effect sizes. I then focus on IV designs as
they allow for a within-study comparison between causal and non-causal estimates, the Two-Stage
Least-Squares (TSLS) and the corresponding “naive” Ordinary Least Squares (OLS) respectively.
For many studies in this literature, the IV both reduces precision, limits statistical power and yields
much larger estimates. The TSLS estimators are often drastically less precise than the OLS ones,
with a median ratio of their respective standard errors of 3.8. This is suggestive of exaggeration:
by reducing precision, the causal identification strategies likely induce exaggeration and produce
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biased estimates. Only 2% of the IV designs would retrieve an effect size equal to that of the
“naive” OLS—at the conventional 80% power threshold. The median exaggeration factor would
be of 4.5. For an example study from this literature, I show that the bias of the IV could be 3.1
times larger than that of the OLS and that exaggeration likely explains this difference.

Next, I derive a formal proof of the existence of the trade-off for prevailing causal identification
strategies. Specifically, I show that the bias caused by exaggeration can be larger than the one
caused by confounders. I also analyze the drivers of exaggeration and show that it increases as
the strength of the instruments decreases, the number of exogenous shocks decreases or when
controlling for a confounder absorbs more of the variation in the treatment than in the outcome.

Then, I illustrate the existence of this “causal exaggeration” in realistic settings using examples
drawn from environmental, education, labor, health and political economics. The exaggeration of
statistically significant estimates can be defined as the ratio of the estimated effect over the true
effect, a quantity which is never known in a real world setting. In order to be able to compute
this quantity, I turn to simulations. In addition, Monte-Carlo simulations allow to vary the value
of the parameter of interest ceteris paribus. An actual setting would for instance only allow to
observe one strength for a given instrument. Since these simulations have an illustrative purpose
only, I intentionally focus on settings in which statistical power can be low. All other simulation
assumptions are chosen to make it as easy as possible to recover the effect of interest. I consider
simple linear models with constant and homogenous treatment effects, i.i.d. observations and
homoskedastic errors. All the models are correctly specified and accurately represent the data
generating process, except for the omitted variable.

Finally, I discuss concrete avenues to address this causal exaggeration when carrying out a
non-experimental study 1. First, a series of tools can be used to evaluate the potential magnitude
of confounding and exaggeration issues separately. Sensitivity analyses help with the former while
power calculations help with the latter. For instance, the sensitivity analysis tools developed in
Cinelli and Hazlett (2020) enable to assess how strong confounders would have to be to change the
estimate of the treatment effect beyond a given level we are interested in. Then, considering the
attention given to bias avoidance in the economics literature, I underline that making power central
to non-experimental analyses, even after an effect has been found, would help limit bias caused
by exaggeration. Prospective power simulations help identify the design parameters affecting
power and exaggeration by approximating the data generating process (Gelman 2020, Black et al.
2021). Retrospective power calculations allow to evaluate whether a study would have enough
power to confidently estimate a range of smaller but credible effect sizes (Gelman and Carlin 2014,
Stommes et al. 2021). Focusing more specifically on the trade-off and its drivers, I present tools to

1. In experimental studies, a solution to increase power is generally to increase sample size, reduce noise by
improving measurement or improving balance or to focus on larger potential effects.
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visualize the variation actually used for identification when using causal identification strategies.
The companion website describes in details how such analyses can be implemented. Finally, I
briefly discuss potential solutions to mitigate this trade-off.

This paper contributes to three strands of the applied economics literature. First, the idea that
causal identification estimators, while unbiased, may be imprecise is not new; this is part of the
well-known bias-variance trade-off (Imbens and Kalyanaraman 2012, Deaton and Cartwright 2018,
Hernán and Robins 2020, Ravallion 2020). I approach this literature from a different angle: through
the prism of statistical power and publication bias. Not only the limited precision resulting from
the use of causal identification methods could make it difficult to draw clear conclusions regarding
the exact magnitude of the effect but I argue that it might also inherently lead to inflated published
effect sizes, creating another “bias”. The bias-variance trade-off can in fact be a bias-bias trade-off.

Second, studies discussing the exaggeration of statistically significant estimates due to a lack
of power usually do not investigate its determinants and focus on specific causal identification
methods separately (Ioannidis et al. 2017, Schell et al. 2018, Ferraro and Shukla 2020, Black
et al. 2021, Stommes et al. 2021, Young 2021). In a companion paper, I highlight tangible design
parameters that can cause exaggeration for a wide range of empirical designs (Bagilet 2023). In
the present paper, I take a step back and propose an overarching mechanism, inherent to causal
identification strategies as a whole, and that can explain these issues: although each strategy does
so through different means, in essence they discard part of the variation, thereby increasing the
risks of exaggeration.

Third, this study contributes to the literature on replicability in economics (Camerer et al. 2016,
Ioannidis et al. 2017, Christensen and Miguel 2018, Kasy 2021). The trade-off presented in this
paper suggests that the widespread use of convincing causal identification methods in economics
may not shield the field from potential replication threats.

In the following section, I document evidence of causal exaggeration in an example literature,
that of the short-term health effects of air pollution. In section III, I study the drivers of ex-
aggeration and formally show in a simple setting that the use of causal identification strategies
can exacerbate it. In section IV, I implement realistic Monte-Carlo simulations to illustrate the
existence of the confounding-exaggeration trade-off. I discuss potential solutions to navigate this
trade-off in section V and conclude in section VI.

II Causal Exaggeration in an Example Literature

The trade-off presented in this paper only has concrete implications if the use of causal iden-
tification strategies yields substantial exaggeration, especially as compared to the amount of bias
caused by confounders these methods allow to avoid. I therefore document the magnitude of ex-

Page 7

https://vincentbagilet.github.io/causal_exaggeration/


Causal Exaggeration

aggeration, comparing it to the bias of a standard regression model. To do so, I focus on the
literature on the short term health effects of air pollution, one of the many literatures targeting
small effects. The historical literature mostly relies on associations (Dominici and Zigler 2017, Bind
2019). Newly obtained results based on causal identification strategies confirm the adverse effects
of air pollution in the short term (Schwartz et al. 2015; 2018, Deryugina et al. 2019). Yet, causal
estimates are substantially larger than what would have been predicted by the standard epidemi-
ology literature, some estimates being more than 10 times larger. Even within a given setting, my
literature review shows that the median of the ratio of the obtained 2SLS to their corresponding
“naive” OLS estimates is 3.8. What can explain that causal methods yield such large effects sizes,
as compared to non-causal methods? Causal strategies could arguably remove omitted variable
bias, reduce attenuation bias caused by classical measurement error in air pollution exposure or
target a different causal estimand. But exaggeration could also explain part of this difference as
studies on the short-term health effects of air pollution often display a low relative precision as a
result of typically small effect sizes and relatively coarse data, at the city-day level (Peng et al.
2006, Peng and Dominici 2008).

In the present section, I review both the standard epidemiology and the causal inference lit-
erature. I built an algorithm based on regular expressions to retrieve estimates and confidence
intervals from abstracts of the former literature and perform a manual review for the latter. De-
tails on their implementation are available here. The final corpora are composed of 2155 estimates
from 668 articles and 537 estimates from 36 articles respectively. I use them to show evidence of
publication bias and exaggeration in this literature. I then quantify the later for the whole liter-
ature, focusing on differences between causal and standard approaches. Finally, for an example
study, I compare the exaggeration of the causal approach to the confounding bias of the “naive”
regression.

II. 1 Evidence of publication bias in this literature

Exaggeration only arises in the presence of publication bias. The left panel of Figure 2 reveals
its presence in causal studies from this literature. Following the approach used in Brodeur et al.
(2016; 2020), I show that there is an excess mass in the t-statistics distribution at the 5% statistical
significance threshold. The right panel of Figure 2 produces further evidence of this favoring of
significant estimates but also points to a consequence of this publication bias: published estimates
from imprecise studies might be exaggerated. In this plot we observe that less precise studies
display larger standardized effect sizes. If published estimates captured true effects, their stan-
dardized effect size should be independent of the precision of the study. This figure constitutes
suggestive evidence of selection on significance and exaggeration in this literature.
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Figure 2 – Suggestive Evidence of Publication Bias and Exaggeration in the Causal Inference
Literature on Acute Health Effects of Air Pollution.

Notes: The sample in the left panel includes all 537 estimates reported in articles from the causal literature, including
“naive” OLS estimates and placebo tests. Following Brodeur et al. (2020), the weights are equal to the inverse of the
number of tests displayed in the same table multiplied by the inverse of the number of tables in the article. In the
right panel we exclude the “naive” OLS estimates and placebo tests. Both axes are on a log10 scale. Limiting the
sample to economics journal leaves the figures essentially unchanged (see supplemental material). Distinguishing
between top 5 and other journals shows that even if there standardized effect sizes are typically smaller in top 5
journals, the same inverse relationship can be observed.

II. 2 Quantifying exaggeration

The exaggeration of an estimator corresponds to the expected value of the absolute value of
significant estimates. As such, it depends on the true magnitude of the estimand of interest; this
true effect determines the value the estimator is centered on. Exaggeration can therefore only
be calculated by hypothesizing true effect sizes. Considering the wide variety of treatments and
outcomes in the literature on the acute health effects of air pollution, there is a multitude of
estimands and “true effects”. To circumvent this limitation and since Ioannidis et al. (2017) and
Ferraro and Shukla (2020) find a typical exaggeration of two in the economics literature, I first
evaluate the proportion of studies that would have a design reliable enough to retrieve an effect
size equal to half of the obtained estimate.

If the true effect size was equal to half of the obtained estimate, 58% of the standard epidemi-
ology studies would have a power below the conventional 80% target. The median exaggeration
factor would be 1.3. These figures however hide a lot of heterogeneity across studies. For one
quarter of studies, the exaggeration would be larger than 1.9. This hypothesis on the true effect
size, despite enabling to get an overview of this heterogenous literature, suffers from an important
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limitation. It is particularly conservative: hypothesized effect sizes based on exaggerated estimates
will be too large and will thus minimize exaggeration. For a more homogenous subset of this lit-
erature, I thus make more informed guesses about potential true effect sizes, using results from a
meta-analysis. Shah et al. (2015) gathered 94 studies on the effects of several air pollutants on
mortality and emergency admissions for stroke. I find that 63% of the studies in Shah et al. (2015)
have a statistical power below 80% and that the median exaggeration ratio is 1.6.

The causal literature displays an even lower power: if the true effect size of each study was equal
to half of the obtained estimate, the median power would be 33% and the median exaggeration
ratio would be 1.7. Only 11% of studies would have a power greater than 80%. One quarter of the
studies would, on average, exaggerate the true effect sizes by a factor greater than 2. Focusing on
IV designs allows to make a less arbitrary intra-study comparison, comparing the 2SLS estimates
to the “naive” OLS one. If conventional bias is limited and the true effect is equal to the naive
estimate, the median power of the IVs would only be 8.4% and median exaggeration would reach
4.5. Only 2.0% of the IV designs would have a power of 80% to detect an effect size of the
magnitude of the OLS estimate. Significant 2SLS estimates would be greatly biased. This can
be explained by the fact that the IV drastically reduces precision; the median standard error of
the 2SLS estimators is 3.8 times larger than the one of the corresponding OLS. This is suggestive
of causal exaggeration: a large share of the IVs reduce precision and yield likely exaggerated
estimates. 2

II. 3 Illustration of the trade-off

I then investigate causal exaggeration further, exploring whether the use of causal methods
can actually induces bias through exaggeration. For an example study, He et al. (2020), I compare
the bias of the “naive” OLS to that of the IV by computing their distance to an estimate of
the “true effect” they target. I define this “true effect” in two ways. First, I use the results of
a meta-analysis of epidemiological studies (Shah et al. 2015). By pooling a number of studies
carried out in various contexts, this meta-estimate might represent the average effect one may
expect from such a study. However, the studies in this meta-analysis do not rely on canonical
causal identification strategies and may be thought of as suffering from counfounding. I thus
consider the result of Deryugina et al. (2019)—a precise causal study that may be less exposed
to exaggeration—as an alternative estimate of the true effect. This estimate may be context
specific and the “true effect” in He et al. (2020) may deviate from these. The present discussion is
conditional on this true underlying effect being close to these hypothesized true effect sizes.

2. Note that, as hinted by figure 2, some causal studies are more precise and unlikely to suffer from severe
exaggeration issues.
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He et al. (2020) finds that a “10µg.m−3 increase in PM2.5 increases mortality by 3.25%” (s.e.
1.43%). Their corresponding OLS results suggest a 0.32% increase (s.e. 0.23%). For a similar
increment in air pollution, Shah et al. (2015) and Deryugina et al. (2019) document a 1.1% and
1.8% increase in mortality respectively. The OLS estimate in He et al. (2020) is closer to the “true
effect” based on Shah et al. (2015) than their 2SLS estimate. Provided that the three estimands
are comparable, the bias of the IV is larger than that of the OLS. If the true effect was in fact
closer to the one found by Deryugina et al. (2019), both biases would be roughly equal and the
bias of the IV still substantial.

Exaggeration could explain this difference. Even if the 2SLS estimator effectively removes all
conventional biases, the design in He et al. (2020) would still yield exaggerated statistical significant
estimates. Figure 3 illustrates this point.

Figure 3 – Illustration of the Confounding-Exaggeration Trade-off in He et al. (2020)

OLS point estimate 
in He et al. (2020)

Meta-analysis 
estimate

2SLS point estimate 
in He et al. (2020)

Variance equal to that of 
the 2SLS estimator in He 

et al. (2020)

Notes: The distribution for the 2SLS estimator is centered on the true effect, represented by the solid line and
defined as the meta-estimate found in Shah et al. (2015). Its variance is equal to the one of the 2SLS estimator in
He et al. (2020). The distribution for the OLS estimator is centered on the OLS estimate found in He et al. (2020)
and its variance equal to that of this same estimator. The dashed and dotted lines represent the 2SLS and OLS
estimates found in He et al. (2020) respectively.

The distribution of the 2SLS estimator represented in figure 3 assumes that the estimator is
unbiased and thus centered on the meta-estimate found in Shah et al. (2015). The variance of this
distribution corresponds to the variance of the 2SLS estimator found in He et al. (2020). Due to
the lack of precision of this design, the statistically significant estimates are located in the tail of
the distribution and substantially exaggerate the true effect, by a factor 3.2 on average. The 2SLS
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estimate found in He et al. (2020) could be one of these estimates. The distribution of the OLS
estimator is the one obtained by the authors. I ignore exaggeration of the OLS for clarity but since
the OLS is biased downward, inflating it would yield an estimate closer to the true effect.

This example illustrates that in a published study where a causal identification strategy sub-
stantially reduces the precision of the estimator, the resulting statistically significant estimates
may be further away from the true effect than the “naive” OLS estimate, even if the estimator
is unbiased. Note that a comparable result holds if the true effect is equal to the one found in
Deryugina et al. (2019). With this design, the average exaggeration would be 3.1 times larger than
the OVB (or 1.3 if the true effect is closer to the one found in Deryugina et al. (2019)).

III Mathematical derivation

In this section, I formally prove the existence of the confounding-exaggeration trade-off and
describe its drivers in a simple setting.To do so, I first define an exaggeration ratio and show that it
increases with the variance of normally distributed biased estimators. This leads me to computing
the asymptotic distributions of a series of estimators in order to prove their normality and study
drivers of their variances, and ultimately of their exaggeration ratios. Finally, I show that, for any
magnitude of OVB, exaggeration can be greater when using a causal inference method than the
overall bias combining exaggeration and OVB in the naive regression.

III. 1 Properties of the exaggeration ratio

Following Gelman and Carlin (2014), we can define the exaggeration ratio E, as the expectation
of the absolute value of significant estimates over the absolute value of the true effect. For an
estimator β̂ of a true effect β, with standard deviation σ and a two-sided hypothesis test of size α

with threshold value zα, let

E(β̂, σ, β, zα) =
E
[
|β̂|
∣∣β, σ, |β̂| > zασ

]
|β|

(1)

Lu et al. (2019) and Zwet and Cator (2021) showed that, for given test and true effect sizes,
the exaggeration ratio increases with the variance of an unbiased normally distributed estimator.
We can extend this proof to biased estimators and get that: 3

Lemma 1. For an estimator β̂b ∼ N (β + b, σ2) of a true effect of magnitude β and a fixed bias b

of the same sign as and independent from the true effect,

3. All the proofs of the lemma and theorems are in appendix A.
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— E is a decreasing function of the Signal-to-Noise Ratio (SNR), β
σ
, and only depends on σ

through this SNR.
— limσ→∞E(β̂b, σ, β, zα) = +∞.

Figure 1 provides a clear intuition for these results in the unbiased case. Note that here, we
focus on cases in which the bias is in the same direction as the true effect so that exaggeration
from causal inference methods and OVB do not cancel each other.

Based on lemma III. 1, to study how exaggeration evolves with the IV strength in an IV setting,
the number of exogenous shocks in a reduced form and the correlation between the explanatory
variable of interest and the omitted variable of interest, we can show asymptotic normality and
study how the variances of these estimators evolve with these parameters. This relies on the
assumption that the sample size is large enough so that the sample distribution of the estimator
is well approximated by their asymptotic distribution.

III. 2 Setting and data generating process

Consider a usual linear homoskedastic regression model with an omitted variable. For any
individual i ∈ {1, ..., n}, we write:

yi = β0 + β1xi + δwi + ui (2)

where y is the outcome, x the explanatory variable, w an unobserved omitted variable, u

an unobserved error term. (β0, β1, δ) ∈ R3 are unknown parameters. β1 is the parameter of interest.

Assume homogeneous treatment effects and homoskedasticity, along with the usual OLS
assumptions (i.i.d. observations, finite second moments, positive-definiteness of E[xix′

i]—with
xi = (1, xi)

′— and ui conditional mean-zero and uncorrelated with xi and wi). Assume that
wi is unobserved, correlated with xi and that δ ̸= 0. To simplify the derivations, I further
assume that the unobserved variable is centered, i.e. E[wi] = 0. I also assume that the vari-
ance of the component of wi that is orthogonal to xi (denoted w⊥x

i ) does not vary with xi, i.e.,
Var(w⊥x

i |xi) = Var(w⊥x
i ). Consider the following data generating process for xi:

xi = µx + γwi + ϵi (3)

where γ ∈ R∗ since x and w are correlated. Set ρxw = corr(x,w) = γσw

σx
. In the IV and reduced

form sections, I further assume that there exists a valid instrumental variable zi for xi, i.e. that
µx + ϵi = π0 + π1zi + ei where (π0, π1) ∈ R2 are unknown parameters. The existence or not of this
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valid instrument does not affect the results in the controlled and OVB cases. Since the instrument
is valid, it satisfies exogeneity, ie E[ziui] = 0 and E[ziwi] = 0, relevance, ie rank(E[zix′

i]) = 2, and
positive-definiteness of E[ziz′i]. The data generating process for xi becomes:

xi = π0 + π1zi + γwi + ei (4)

I assume that ei is uncorrelated with zi and wi, ie E[ziei] = 0 and E[wiei] = 0. I also assume
homoskedasticity for this term, such that E[e2i |zi, wi] = σ2

e is constant.

Overall, this DGP is close to the usual textbook one but with an additional omitted variable.
The Directed Acyclic Graph (DAG) in figure 4 represents the data generating process.

Figure 4 – DAG of the data generating process

Notes: for clarity the error terms are represented in this graph, in beige. Model parameters are noted as edge labels.

III. 3 Asymptotic distributions of the estimators

I now derive the asymptotic distributions of the various estimators. For each model, the goal
is to show asymptotic normality and to study the evolution of the sampling distribution variances
with the value of the parameter of interest, i.e., a measure of the correlation between x and w

(γ) in the controlled case, of the IV strength (π1) in the IV case and of the number of exogenous
shocks (σ2

z when z is a dummy) in the reduced form case. I assume that the sampling distributions
are well approximated by the asymptotic distributions. In order for the variation of one factor not
to impact other factors of interest, I consider the variances of the variables (σ2

y, σ
2
x, σ

2
w and σ2

z) as
fixed but adjust for the variances of the error terms (σ2

u and σ2
ϵ ) when varying the values of one of

the parameters (γ, δ and π1). This corresponds to thinking in terms of shares of the variance of x
and y explained by “defined” variables (i.e., observed variables and w) versus by residuals. Finally
note that comparison between cases with and without OVB for different parameter values is only
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relevant if varying the parameter of interest does not affect the OVB. I thus make comparative
statics analyses at bias fixed, i.e., as shown below, for γδ = κ = cst.

III. 3.1 Naive regression (OVB)

First, let us study the benchmark against which we are going to compare our causal approaches.
Consider the “naive” regression of y on x (with w omitted).

Lemma 2. Based on the data generating process described in section III. 2, for β̂ovb the OLS
estimate of β1 in the regression of y on x, β̂ovb

d→ N (β1 + bovb, σ2
ovb), with

bovb =
δγσ2

w

σ2
x

and σ2
ovb =

σ2
u + δ2σ2

w(1− ρ2xw)

n σ2
x

The intuition for the formula of the asymptotic variance has been discussed in the introduction:
σ2
u + δ2σw(1− ρ2xw) is the part of the variance in y that is not explained by x (σ2

y⊥x).

Note that, varying the parameter of interest, ρxw, will change the bias and σ2
u. Since σ2

x and σ2
w

are fixed, reasoning at bovb = cst is equivalent to considering that γδ = κ = const. Then, noting
that ∀i, ui = yi − β0 − β1xi − δwi and computing its variance, we can rewrite the variance of the
estimator as a function of fixed variances and one or less varying parameter:

σ2
ovb =

σ2
y − β2

1σ
2
x − 2β1κσ

2
w − κ2 σ

4
w

σ2
x

n σ2
x

This expression underlines that, for a given bias, σ2
ovb does not vary with γ, or equivalently δ,

the parameters of interest. Applying lemma III. 1 proves that Eovb does not either.

III. 3.2 Controlled regression

Next, let us turn to the “ideal” case in which no variable is omitted, i.e. we control for the
omitted variable w and thus partial out confounders. The model considered accurately represents
the DGP. This corresponds to the usual OLS setting with a constant and two regressors that are
uncorrelated with the error: y regressed on x and w.

Lemma 3. Based on the data generating process mentioned previously, for β̂ctrl the OLS estimator
of β1 in the regression of y on x and w, β̂ctrl

d→ N (β1, σ2
ctrl), with

σ2
ctrl =

σ2
u

n σ2
x(1− ρ2xw)
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Note that σ2
x(1 − ρ2xw) is the part of the variance of x that is not explained by w (σ2

x⊥w) and
σ2
u the part of the variance of y that is not explained by x nor w (σ2

y⊥x,w); here too we retrieved
a result described in introduction. For a given bias, we then rewrite σ2

ctrl as a function of fixed
variances and one varying parameter, γ:

σ2
ctrl =

σ2
y − β2

1σ
2
x − κ2

γ2σ
2
w − 2β1κσ

2
w

n (σ2
x − γ2σ2

w)

Since the numerator and denominator respectively increase and decrease with |γ|, σ2
ctrl in-

creases with |γ|. For a given bias, the more w is correlated with x (and thus roughly the less it is
with y since δγ = const), the larger the variance of the estimator. In addition, we can note that,
for a given bias, the variance of the estimator can be arbitrarily large since lim

γ2→ σ2
x

σ2
w

σ2
ctrl = +∞.

III. 3.3 Instrumental Variables

In the previous section, we considered a case in which we removed variation that included
unwanted endogenous variation. We now turn to the IV, a converse situation where we select
variation we want, exogenous variation. We estimate the IV model in which we regress y on
xi = (1, xi)

′ instrumented by zi = (1, zi)
′. We are thus in a just-identified case and β̂2sls = β̂iv.

Lemma 4. Based on the data generating process mentioned above, for β̂iv the IV estimator of β1

in the regression of y on x instrumented by z, β̂iv
d→ N (β1, σ2

iv), with

σ2
iv =

σ2
u + δ2σ2

w

n σ2
xρ

2
xz

Note that the numerator is σ2
y⊥x̂, the part of the variance in y that is not explained by x̂, the

predicted value of x in the first stage and the denominator is σ2
x̂. For a given bias, noting that

ρxz = corr(x, z) = π1
σz

σx
and replacing σ2

u, we can rewrite σ2
iv as a function of fixed variances and

one varying parameter, π1:

σ2
iv =

σ2
y − β2

1σ
2
x − 2β1κσ

2
w

n π2
1σ

2
z

Clearly, the smaller π1, the larger σ2
iv. In addition, limπ1→0 σ

2
iv = +∞.

III. 3.4 Reduced form

Let us now assume that we want to directly estimate the effect of the instrument on the outcome
of interest. Plugging equation 4 into equation 2 yields:

yi = (β0 + β1π0) + (β1π1)zi + ((δ + β1γ)wi + ui + β1ei)
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Note that if we directly regress the outcome on the instrument, the resulting estimand will be
different from that of the other models. To make them comparable, we could set π1 to 1 so that
an increase of 1 in the instrument causes an increase of β1 in y. Regardless of whether we make
this assumption or not, regressing y on z corresponds to the usual univariate, unbiased case and
directly gives the following result:

Lemma 5. Based on the data generating process mentioned previously, for β̂red, the OLS estimator
of the reduced form regression of y on z, β̂red

d→ N (β1, σ2
red), with

σ2
red =

σ2
y − β2

1π
2
1σ

2
z

n σ2
z

Note that the numerator is the part of the variance of y that is not explained by z (σ2
y⊥z). In

addition, it is clear that the smaller σ2
z , the larger σ2

red. In addition, limσz→0 σ
2
red = +∞.

In the binary case, σ2
z = p1(1 − p1) with p1 the proportion of treated observations, i.e., the

proportion of 1 in z. When most observations have the same treatment status, i.e., p1 close to 0
or 1, σ2

z tends to zero and σ2
red shoots up. There is not enough variation in the treatment status

to precisely identify the effect of interest.

III. 4 Exaggeration ratios

Combining the results from lemma 2 through 5 regarding the asymptotic distribution of the
various estimators with lemma III. 1 stating that exaggeration increases with the variance of a
normally distributed estimator yields:

Theorem 1. For the data generating process described in section III. 2, the exaggeration ratio of
the controlled, IV and reduced form estimators, respectively Ectrl, Eiv and Ered, are such that:

— Ectrl increases with the correlation between the omitted variable and the explanatory variable
of interest (i.e. |γ| or |ρxw|), for a given bias,

— Eiv decreases with the strength of the IV (i.e. with |π1| or |ρxz|),
— Ered increases when the number of exogenous shocks decreases in the binary case

Also using the same lemma and the limit properties of the variances described in section III.
2, and since, at fixed bias, Eovb does not vary with the parameters of interest, we get:

Theorem 2. For the data generating process described in section III. 2, ∀ bovb,
— ∃ γ s.t. Ectrl > Eovb

— ∃ π1 s.t. Eiv > Eovb
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— ∃ σz s.t. Ered > Eovb

For some parameter values, statistically significant estimates can be larger on average when
using a convincing causal identification strategy that eliminates the omitted variable bias than
when embracing the bias and running a naive biased regression.

IV Simulations

For clarity, I split the simulations by identification strategy and build simulations that reproduce
real-world examples from economics of education for RDD, labor economics for matching, political
economy for IV, health economics for exogenous shocks and environmental economics for control
and fixed effects approaches. Real-world settings enable to clearly grasp the relationships between
the different variables and to set realistic parameter values. Since all these simulations have an
illustrative purpose only, I intentionally focus on settings in which statistical power can be low.
All the models are correctly specified and accurately represent the data generating process, except
for the omitted variable bias (OVB).

For each identification strategy, I start by laying out how the method enables to retrieve a
causal effect. It naturally points to the key parameter through which the confounding/exaggeration
trade-off is mediated. I then briefly describe the example setting considered and the simulation
assumptions. I finally display the simulation outputs and discuss the implications of the trade-off
that are specific to the identification strategy considered. Detailed codes for simulation procedures
are available on the project’s website.

IV. 1 Controlling for confounders

Intuition. To identify a causal effect and avoid the risk of confounders, an “ideal” approach would
be to partial them out by directly controlling for them. However, as discussed in the introduction
and section III, controlling for an additional variable may increase the variance of the estimator if
it absorbs more variation in the explanatory variable of interest than in the outcome variable. The
same reasoning applies to Fixed Effects (FEs): if including FE partials out more of the variation
in x than in y, it will increase the variance of the estimator.

Case-study and simulation procedure. To highlight this trade-off, I consider the extreme
case in which we either perfectly control for confounders or do not control for them. I consider a
simple setting, with one outcome variable y, one explanatory variable x and an omitted variable
w. The data generating process is the same as described in equations 2 and 3. As in section III,
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I reason at bias fixed and variances of the defined variables fixed, i.e. varying the share of the
variance of x and y that is explained by w.

Results. Figure 5 displays the results of these simulations. The more the unobserved variable
is linked to the explanatory variable of interest as compared to the outcome variable, i.e., the
larger the γ/δ ratio, the larger the exaggeration. When this ratio is large, controlling can cause
exaggeration to become larger than the OVB plus exaggeration when the variable is omitted.

Figure 5 – Evolution of the Bias with the Correlation of the omitted variable with x and y,
conditional on significance.

Notes: The blue line indicates the average bias for estimates from the control model that are statistically significant
at the 5%. The orange line represents the bias of statistically significant estimates from the model with the omitted
variable. In this simulation, N = 2,000. For now, the simulations is calibrated with arbitrary numbers but I will
modify this in a later version of the project. Details on the simulation and calibration are available at this link.

IV. 2 Matching

Intuition. Another approach to retrieve a causal effect in a situation of selection on observables
is to use matching. This method defines “counterfactuals” for treated units by picking comparable
units in the untreated pool. In the case of propensity score matching, treated units are matched to
units that would have a similar predicted probability of taking the treatment, i.e. couple of units
with a difference in propensity score lower than a critical value called the caliper. The smaller
the caliper, the more comparable units have to be to be matched and therefore the lower the risk
of confounding. Yet, with a stringent caliper, some units may not find a match and be pruned,
decreasing the effective sample size. This can lead to a loss in statistical power and produce
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statistically significant estimates that are inflated. In the case of matching, the confounding-
exaggeration trade-off is therefore mediated by the value of the caliper.

Case-study and simulation procedure. I illustrate this issue by simulating a labor training
program where the treatment is not randomly allocated (Dehejia and Wahba 1999). Individuals
self-select into the training program and may therefore have different characteristics from individ-
uals who do not choose to enroll. To emulate this, I assume that the distribution of the propensity
scores differ for treated and control groups: they are drawn from N (µT , σT ) and N (µC , σC) re-
spectively. This can be analogous to considering that matching is done based on the value of a
unique covariate. Based on how these propensity scores are created, I define the potential monthly
income of each individual i, under the treatment or not.

Based on this simulation framework, I generate 1000 datasets for each propensity score matching
procedure with caliper values ranging from 0 to 1. Parameter values of the simulation are set to
make them realistic and can be found here. Once units are matched, I simply regress the observed
revenue on the treatment indicator.

Figure 6 – Evolution of Bias with the Caliper in Propensity Score Matching, Conditional on
Statistical Significance.

Notes: The green line indicates the average bias for all estimates, regardless of their statistical significance. The
beige line represents the inflation of statistically significant estimates at the 5% level. The caliper is expressed in
standard deviation of the propensity score distribution. Details on the simulation are available at this link.

Results. Figure 6 indicates that the average bias of estimates, regardless of their statistical
significance, decreases with the value of the caliper as units become more comparable. For large
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caliper values, units are not comparable enough and confoundings bias the effect. For small caliper
values, they become comparable but the sample size becomes too small to allow for a precise
estimation of the treatment effect and exaggeration arises. Statistically significant estimates never
get close of the true effect. This imprecision, and thus exaggeration, results from the fact that the
matching procedure does not use information on outcomes that would reduce the residual variance
of the model but rather focuses on reducing bias arising from covariates imbalance (Rubin 2001).

IV. 3 Regression Discontinuity Design

Intuition. To identify a causal effect, a regression discontinuity approach also prunes units that
cannot be deemed comparable enough to any units with the opposite treatment status. This
method relies on the assumption that for values close to the threshold, treatment assignment is
quasi-random. Under this assumption, individuals just below and just above the threshold would
be comparable in terms of observed and unobserved characteristics, and only differ in their treat-
ment status. To avoid confounding, the RDD focuses on observations within a certain bandwidth
around the threshold and discards observations further away. The effective sample size where the
identification of causal effect of the treatment is the most credible is thus smaller than the total
sample size, leading to a lower precision. For this method, the confounding-exaggeration trade-off
is therefore mediated by the size of the bandwidth.

Case-study and simulation procedure. To illustrate this trade-off, I consider a standard ap-
plication of the sharp RD design in economics of education in which students are offered additional
lessons based on the score they obtained on a standardized test. Thistlethwaite and Campbell
(1960) introduced the concept of RDD using a similar type of quasi-experiment. Students with
test scores below a given threshold receive the treatment while those above do not. Since students
far above and far below the threshold may differ along unobserved characteristics such as ability,
a RDD estimates the effect of the treatment by comparing outcomes of students whose initial test
scores are just below and just above this threshold.

The simulation framework for the RDD is as follows. If a student i has an initial scores Quali

below a cutoff C, they must take additional lessons, making the allocation of the treatment T

sharp: Ti = I[Quali < C]. Final scores are correlated with qualification score. Further assume
that both qualification and final test scores are affected by students’ unobserved ability w in a
non-linear (cubic) way. A high or low ability has a strong positive impact on test scores while
an average one does not strongly impact test scores. The final test score of student i is thus:
Finali = β0 + β1Ti + ηQuali + δf(wi) + ui, where f a non linear function (here cubic) and
ui ∼ N (0, σ2

u) random noise. β1 is the causal parameter of interest.
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To make the simulations realistic, I derive parameters values from statistics from the De-
partment of Education and treatment effect sizes from a meta-analysis of RCTs in economics of
education by Kraft (2020). Given these parameters values, I then generate 1000 datasets with
10,000 observations. For each dataset, I estimate the treatment effect by regressing the final score
on the treatment status and the qualifying score for different bandwidth sizes.

Results. Figure 7 displays the results of these simulations. While the average of all estimates
gets close to the true effect as bandwidth size and thus OVB decrease, in this setting, the aver-
age of statistically significant estimates never gets close to the true effect. For large bandwidths,
the omitted variable biases the effect while for small bandwidths, the small sample size creates
exaggeration issues. The optimal bandwidth literature describes a similar trade-off but with dif-
ferent consequences (Imbens and Kalyanaraman 2012). They consider a bias-precision trade-off,
I consider an omitted variable bias-exaggeration bias trade-off. As for matching, the parameter
mediating the trade-off can directly be adjusted in a continuous way by the researchers and the
more we reduce one of these two biases, the more we increase the other. For other methods such
as IV or exogenous shocks, the issue is more dichotomized and the use of the causal identification
strategy comes with a drawback.

Figure 7 – Evolution of the Bias with Bandwidth Size in Regression Discontinuity Design, condi-
tional on significance.

Notes: The green line indicates the average bias for all estimates, regardless of their statistical significance. The
beige line represents the inflation of statistically significant estimates at the 5% level. In this simulation, N =
10,000. The bandwidth size is expressed as the proportion of the total number of observations of the entire sample.
Details on the simulation are available at this link.
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IV. 4 Instrumental Variables Strategy

Intuition. Instrumental variables strategies overcome the issue of unobserved confounding by
only considering exogenous variation in the treatment, i.e. the variation that is explained by the
instrument. Even when this exogenous fraction of the variation is limited, the instrument can
successfully eliminate confounding on average. However, the IV estimator will be imprecise and
statistical power low. In the case of the IV, the confounding-exaggeration trade-off is mediated
by the strength of the instrument considered. The weaker the instrument, the more inflated
statistically significant estimates will be.

Case-study and simulation procedure. To illustrate this trade-off, I focus on the impact of
voter turnout on election results. To avoid the threat of confounding in this setting, studies often
take advantage of exogenous factors such as rainfall that affect voter turnout. I reproduce such
setting and assume that the true data generating process for the republican vote share is such
that in location i, Sharei = β0 + β1Turnouti + δwi + ui, where w is an unobserved variable and
u ∼ N (0, σ2

u) some random noise. The causal parameter of interest is β1. In addition, turnout is
affected by the amount of rain: Turnouti = π0 + π1Raini + γwi + ei, where Raini is the amount
of rain in location i on the day of the election and e some random noise drawn form N (0, σ2

e). I
refer to π1 as the strength of the instrumental variable.

To make the simulations realistic, I derive parameters values from a set of existing studies using
similar variables (Gomez et al. 2007, Fujiwara et al. 2016, Cooperman 2017). For each value of the
IV strength considered, I create 1000 datasets. I run both a naive ordinary least squares model
and a two-stage least squares model to estimate the impact of voter turnout on the vote share of
a party.

Results. Figure 8 displays, for different IV strengths, the average of statistically significant
estimates scaled by the true effect size for both the IV and the naive regression model. When
the instrument is strong, the IV will recover the true effect, contrarily to the the naive regression
model. Yet, when the IV strength decreases, the exaggeration of statistical significant estimates
skyrockets. Even if the intensity of the omitted variable bias is large, for limited IV strengths,
the exaggeration ratio can become larger than the omitted variable bias. When the only available
instrument is weak, using the naive regression model would, on average, produce statistically
significant estimates that are closer to the true effect size than the IV. Of interest for applied
research, a large F -statistic does not necessarily attenuate this problem.
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Figure 8 – Evolution of the Bias of Statistically Significant Estimates Against Strength of the
Instrument in the IV Case.

Notes: The blue line indicates the average bias for IV estimates that are statistically significant at the 5%. The
orange line represents the bias of statistically significant OLS estimates at the 5% level. The strength of the
instrumental variable is expressed as the value of the linear parameter linking rainfall to turnout. In this simulation,
N = 10,000. Details on the simulation are available at this link.

IV. 5 Exogenous shocks

Intuition. To avoid confounding, strategies such as DiD and event studies take advantage of
exogenous variation in the treatment status caused by exogenous shocks or events. In many set-
tings, while the number of observations may be large, the number of events, their duration or the
proportion of individuals affected might be limited. As a consequence, the number of (un)treated
observations can be small and the variation available to identify the treatment limited. Statistical
power is maximized when the proportion of treated observations is equal to the proportion of un-
treated ones, as extensively discussed in the randomized controlled trial literature. In studies using
discrete exogenous shocks, a confounding-exaggeration trade-off is thus mediated by the number
of observations treated. This issue does not only concern DiD event studies but is particularly
salient in this case.

Case-study and simulation procedure. To illustrate this trade-off, I simulate a study of the
impact of air pollution reduction on newborn weight of babies. To avoid confounding, one can
exploit exogenous shocks to air pollution such as plant closures, creation of a low emission zone
or of an urban toll. I simulate the analysis at the zip code and monthly levels and focus on the
example of toxic plant closures. I consider that the average birth weight in zip code z at time
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period t, bwzt, depends on a zip code fixed effect ζz, a time fixed effect τt, and the treatment
status Tz,t, which is equal to one if a plant is closed in this period and 0 otherwise. The average
birth weights bwzt is defined as follows: bwz,t = α + βTz,t + ζz + τt + uz,t. To further simplify
the identification of the effect, I assume a non-staggered treatment allocation and constant and
homogenous effects. I only vary the proportion of zip codes affected by toxic plant closings.

The parameters values of the simulations are inspired from Currie et al. (2015) and Lavaine
and Neidell (2017). For a fixed sample size of 120,000 observations, I generate 1000 datasets for an
increasing number of treated observations and estimate the correct two-way fixed effects model.

Results. Figure 9 displays the results of these simulations. Even though the actual sample size
is extremely large in the example, if the number of treated observations is small, exaggeration can
be important. A very large number of observations does not necessarily prevent exaggeration to
arise.

Figure 9 – Evolution of Bias With the Number of Treated Observations, for Statistically Significant
Estimates, in the Exogenous Shocks Case

Notes: The line indicates the average bias for estimates that are statistically significant at the 5%. In this simulation,
N = 120,000. Details on the simulation are available at this link.

V Navigating the trade-off

In the previous sections, I argued that that using causal identification strategies induces a
trade-off between avoiding confounding and exaggerating true effects. How can we, as applied
researchers using observational data, arbitrate it? Since key pieces of information such as the true
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effect and the effect of omitted variables are inherently unknown, we cannot directly compute the
biases caused by confounders and exaggeration. In this section, I examine how we can, however,
get a sense of threats from both sides of the trade-off and probe its main driver, the variation
used for identification. I then discuss how changing attitudes towards statistical significance and
replicating studies could limit the exaggeration issue.

V. 1 Gauging omitted variable bias

On one side of the trade-off lies the widely discussed bias caused by confounders. Although
it is in essence impossible to measure, tools such as sensitivity analyses are available to gauge
its magnitude (Rosenbaum 2002, Middleton et al. 2016, Oster 2019, Cinelli and Hazlett 2020).
For instance, the method developed in Cinelli and Hazlett (2020) enables to assess how strong
confounders would have to be to change the estimate of the treatment effect beyond a given level
we are interested in. It offers bounds for the strength of the association between the treatment
and potential omitted variables by weighting it against the measured association between the
treatment and observed covariates. A typical conclusion from such an analysis would be: “omitted
variables would have to explain as much residual variance of the outcome and the treatment as the
observed covariate x (age for instance) to bring down the estimate to a value of βl”. In addition, the
authors implement graphical tools to facilitate this comparison. I suggest to use such quantitative
bias analyses to evaluate the restrictiveness of the causal approach required to limit the threat
of unobserved confounding to acceptable levels. In settings where bias caused by confounders is
likely to be low, the

V. 2 Evaluating risks of exaggeration

On the other side of the trade-off lies the exaggeration emerging when statistical power is
low. As OVB, exaggeration and statistical power are in essence impossible to measure as their
computation depends on the true effect which is always unknown. Yet, power calculations can help
assess them by making hypothesizes on the magnitude of the true effect. In randomized controlled
trials, such computations are not only an established practice but a requirement (Duflo et al.
2007, McConnell and Vera-Hernandez 2015, Athey and Imbens 2016). They are, however, rarely
reported in non-experimental studies. Yet, taking publication bias and the threat of exaggeration
into account highlights the necessity of running power calculations in non-experimental studies as
well. A low power or a relatively large variance not only makes it more difficult to detect an effect or
to draw clear conclusions about its magnitude when detected but it can also create a bias. To avoid
this bias, I advocate to make power more central to non-experimental analyses. Currently, in causal
inference textbooks, very few pages are devoted to statistical power in non-experimental studies

Page 26



Causal Exaggeration

(Angrist and Pischke 2009; 2014, Imbens and Rubin 2015, Cunningham 2021). To the best of my
knowledge, only two textbooks discuss the matter in depth (Shadish et al. 2002, Huntington-Klein
2021). Results from power and exaggeration calculations would not only be highly informative but
could also be reported very concisely in the robustness section of articles.

V. 2.1 Prospective power calculations

To evaluate the statistical power of a study, the risk of exaggeration and identifying the factors
driving it, one can first simulate the design of the study (Hill 2011, Gelman 2020, Black et al. 2021).
Simulating a data generating process from scratch requires thinking about the distribution of the
variables, about their relationships and can also help underline the variation used for identification.
I implemented such Monte Carlo simulations in Section IV. In the replication material, I provide
R code to be used as examples of how to run such simulations for most causal identification
strategies. In situations where the relationships among covariates are too complex to emulate, one
can also start from an existing dataset and add a known treatment effect. I implemented real-data
simulations in a companion paper and describe their implementation in its replication material
(Bagilet 2023).

V. 2.2 Retrospective power calculations

Running post-analysis power calculations can also help getting a sense of the statistical power
associated with a research design. Such retrospective calculations allow to evaluate whether the
design of the study would produce accurate and uninflated statistically significant estimates if the
true effect was in fact smaller than the observed estimate (Gelman and Carlin 2014, Ioannidis et al.
2017, Stommes et al. 2021).

I illustrate how a retrospective analysis works by taking the example of Card (1993) on the
relationship between human capital and income. He finds that an additional year of education,
instrumented by the distance of growing up near a four-year college, causes a 13.2% average increase
in wage. The associated standard error is 5.5%. Is there a risk of exaggeration with this design?
Since, as noted by the author himself, the estimate is very imprecise we could expect so. If the
existing literature suggests that such effects are likely to be close close to a 10% increase in wage,
we may wonder if the design in Card (1993) would allow to detect such an effect. We can thus
compute the statistical power of the study under the hypothesis of a true effect size of 10% and for
a precision of 5.5% equal to that obtained in Card (1993). 4 Statistically significant estimates (at
the 5% level) would on average be roughly equal to 15%, therefore overestimating the true effect

4. Timm et al. (2019) and Linden (2019) offer R and Stata packages that enable to easily run these calculations
through an extremely short command: retrodesign(10, 5.5).
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by a factor of 1.5. Statistical power, the proportion of estimates that are significant, would only
be 44%. Conditional on a 10% true effect size being a reasonable assumption, this study would be
under-powered and exaggeration substantial.

The usefulness of any retrospective power analysis lies on the assumption made regarding the
true effect size. To identify a range of plausible effect sizes one can rely on results from meta-
analyses or from existing studies that have a credible design (e.g., a large randomized controlled
trial). 5 When such information is not available, power calculations can be ran for a range of
smaller but credible effect sizes. Such credible effect sizes can be derived from theoretical findings.
It is also possible to evaluate whether the design of our study would be sufficient to detect smaller
effects than the point estimate obtained.

V. 3 Driver of the trade-off

V. 3.1 Navigating the bias-variance trade-off

In non-experimental studies, estimator variance is often important to the extent that a large
variance may lead to a failure to reject the null of zero effect when it is incorrect. Variance is
paramount until a statistically significant estimate is obtained. Yet, exaggeration underlines that
variance matters, even once a significant estimate has been obtained.

Obtaining a statistically significant estimate from an imprecise estimator should not necessarily
be interpreted as a sign of “success” in getting significance despite a large confidence interval. It
could instead be a warning that this estimate may come from the tails of the distribution and
would thus inaccurately represent the true effect. Conditional on having obtained a statistically
significant estimate, a limited precision can hide a bias: exaggeration. This invites to revisit
the well-known bias-variance trade-off: a larger variance can also lead to a larger bias, even in
(conditional) expectation. When combined with the existing statistical significance filter, the bias-
variance trade-off is in fact a bias-bias trade-off. This paper thus urges us to pay attention to the
implications of our design choices on the variance of our estimators, even if a large variance did
not prevent us from obtaining a statistically significant estimate.

V. 3.2 The variation used for identifcation

Causal inference strategies only leverage a subset of the variation to avoid confounders. How-
ever, when this subset is too small, exaggeration arises. Identifying this variation (and the ob-
servations) actually used for estimation can help navigate the confounding-exaggeration trade-off.

5. Note that when such meta-analyses are available, one can use a Bayesian procedure to shrink statistically
significant estimates based on the corpus of estimates from prior studies Zwet and Gelman (2021), Zwet and Cator
(2021), Zwet et al. (2021) .

Page 28



Causal Exaggeration

The measure I outline here both leverages the interpretation of causal inference methods as con-
trol approaches and builds on a procedure developed in Aronow and Samii (2016) for a different
purpose: evaluating the external validity of standard regressions.

Aronow and Samii (2016) essentially interprets the estimate of the coefficient of the treatment
of interest in a simple linear non-causal regression as a weighted average of individual treatment
effects. The weight wi of individual i is simply the squared difference between its treatment
status Ti and the value of this treatment status as predicted by the other covariates X: wi =

(Ti − E[Ti|Xi])
2. If treatment effects are heterogenous, the weighting may lead some observations

to be disproportionally represented in the average effect of the treatment. In that case, the average
of treatment is only representative of a subset of the individual treatments, leading to external
validity issues.

The parallel with my setting directly follows from this interpretation regardless of whether
the treatment is heterogenous or not: observations whose treatment status is well explained by
covariates do not actually contribute to the estimation of the treatment effect. This may lead
to a small effective sample size and to exaggeration. In the control approach to causal inference
strategies, the more variation in the treatment is absorbed when “controlling” for confoundings,
the smaller the effective sample, potentially leading to exaggeration. Aronow and Samii (2016)
leverages the representativity of the effective sample for fear of external validity issues. I focus on
its size for fear of exaggeration.

It might then seem compelling to define this effective sample by proposing a weight value under
which the associated observation does not actually contribute to identification. Yet, considering
the specificity of each analysis and that exaggeration depends on several factors, including the
true effect size, I instead suggest to visualize the individual weights. 6 It allows to get a sense of
where the variation comes from and which are the observations that actually contribute to the
estimation. Since applied economic analyses often rely on panel data, I propose to use a heatmap
as a base for visualization, with time on the x -axis and individuals on the y-axis. If the data is
geographical, one can directly plot the weights on a map.

V. 4 Attitude Towards Statistical Significance and Repli-

cation

Exaggeration only arises in the presence of publication bias. As shown in the simulations, if
estimates were not filtered by their statistical significance, even under-powered studies would on
average recover the true effect, as long as the estimator is unbiased. The exaggeration issue could

6. In future developments of this project, I will however develop a measure of this effective sample size. I may
also need to modify the weights formula in order to account for the variation in y that is absorbed when controlling.
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therefore be addressed by tackling publication bias.
To identify broader pathways to eliminate this filtering of significant results, it is first helpful

to discuss the processes that lead to statistically significant results when power and thus the
probability of obtaining a significant estimate is low. In such situations, they can be obtained
either by “chance” or as an outcome of the garden of forking paths (Simmons et al. 2011, Gelman
and Loken 2013, Kasy 2021). Forks appear at various stages along the path of research, for instance
in data preparation, regarding the inclusion of a given cofntrol variable or later, regarding whether
to carry on with a research that yields non-significant results. Due to the structural flaw that
favors significance, the path followed may be more likely to lead to a statistically significant result.
These choices are most often not the result of bad researcher practices but instead a product of a
structure that portrays significant results as the end goal of research.

The issue being structural, system level changes in scientific practices could also alleviate ex-
aggeration and the trade-off described in this paper. First, many researchers advocate abandoning
statistical significance as a measure of a study’s quality (McShane et al. 2019). To be effective,
this change should be paired with an effort to replicate studies (Christensen and Miguel 2018).
Replications, even of low powered studies, would eventually enable to build the actual distribu-
tion of the causal estimand of interest. Meta-analyzes would then reduce the uncertainty around
the true value of the causal estimand by pooling estimates (Hernán 2021). Finally, the inflation
of statistically significant estimates could be limited by interpreting confidence intervals and not
point estimates and thus considering these intervals as compatibility intervals (Shadish et al. 2002,
Amrhein et al. 2019, Romer 2020). The width of such intervals gives a range of effect sizes com-
patible with the data. Confidence intervals will be wide in under-powered studies signaling that
point estimates should not be taken at face value, even if statistically significant.

VI Conclusion

The economic literature suffers from an extensive lack of statistical power (Ioannidis et al.
2017) and strongly favors statistically significant findings (Rosenthal 1979, Andrews and Kasy
2019, Abadie 2020, Brodeur et al. 2020, for instance). In such situations, estimates published from
underpowered studies exaggerate true effect sizes, even when the estimators are “unbiased” in the
usual sense of E[β̂] = β (Ioannidis 2008, Gelman and Carlin 2014, Lu et al. 2019, Zwet and Cator
2021). It is therefore not surprising that many estimates published in economics have been shown to
be considerably exaggerated (Camerer et al. 2016, Ioannidis et al. 2017), despite the extensive use
of convincing causal inference methods. However, determinants for these exaggeration and power
issues have remained understudied. I argue that exaggeration is exacerbated by the foundational
component of causal inference: the fact that it only leverages subsets of the variation. Although
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causal methods enable to avoid confounding, they also reduce statistical power and thus increase
the risk of exaggeration. The same aspect that makes these methods credible can create another
type of bias. A systematic reporting of statistical power calculations and analysis of the variation
actually used for identification could help to avoid falling into this exaggeration trap.
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A Mathematical proofs

I. 1 Variation of the exaggeration ratio (lemma III. 1)

Proof. Lu et al. (2019) and Zwet and Cator (2021) showed this in the case of b = 0. To extend it

to the biased case, consider Eb =
E
[
|β̂b|
∣∣β1,σ,|β̂b|>zασ

]
|β1| the exaggeration ratio of interest. Note that,

since β̂b is an unbiased estimator of β1 + b, Ẽb =
E
[
|β̂b|
∣∣β1,σ,|β̂b|>zασ

]
|β1+b|

has the properties described

in the lemma. Now, considering that Eb =
∣∣∣β1+b

β1

∣∣∣ Ẽb proves the properties when β1 and b have the
same sign.

I. 2 Asymptotic distribution of β̂ovb (lemma 2)

For readability, let us introduce the usual vector notation such that for instance y = (y1, ..., yn)
′

and set β = (β0, β1)
′ and xi = (1, xi)

′. I also use capital letters to denote matrices (for instance
X = (x′

1, ..., x′
n)

′).

Proof. Since, we do not observe w, we consider the projection of y on X only:

y = Xβovb + uovb (5)

where by definition of the projection, E[X ′uovb] = 0.

We first compute the bias of the estimator. From equation 5 we get:

X ′y = X ′Xβovb +X ′uovb

⇒ E[X ′y] = E[X ′X]︸ ︷︷ ︸
pos. def.

βovb + E[X ′uovb]︸ ︷︷ ︸
0

⇔ βovb = E[X ′X]−1E[X ′(Xβ + δw + u)] cf eq. 2

⇔ βovb = β + E[X ′X]−1E[X ′w]δ

(6)

We then compute the asymptotic distribution. We can write:

√
n(β̂ovb − βovb) =

(
1

n

n∑
i=1

xix′
i

)−1
√
n

(
1

n

n∑
i=1

xiuovb,i

)
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Applying the Weak Law of Large Numbers (WLLN), the Central Limit Theorem (CLT) and
Slutsky’s theorem yields:

√
n(β̂ovb − βovb)

d→ N
(
0,E[xix′

i]
−1E[xix′

iu
2
ovb,i]E[xix′

i]
−1
)

(7)

We are interested in the second component of β̂ovb. To retrieve it we need to compute E[xix′
i]
−1,

E[xiwi] and E[xix′
iu

2
ovb,i].

E[xix′
i] = E

[
1 xi

xi x2
i

]
=

[
1 µx

µx σ2
x + µ2

x

]
⇒ E[xix′

i]
−1 =

1

σ2
x

[
σ2
x + µ2

x −µx

−µx 1

]

E[xiwi] = E

[
wi

xiwi

]
=

 0

E[xi]E[wi]︸ ︷︷ ︸
0

+cov(xi, wi)

 =

 0

γ var(wi)︸ ︷︷ ︸
σ2
w

+ cov(ϵi, wi)︸ ︷︷ ︸
0

 =

[
0

γσ2
w

]

⇒ E[xix′
i]
−1E[xiwi] =

γσ2
w

σ2
x

[
−µx

1

]
(8)

Note that E[xix′
iu

2
ovb,i]

lie
= E[xix′

iE[u2
ovb,i|xi]]. We thus first compute E[u2

ovb,i|xi], noting that:

uovb,i = yi − x′
iβovb

= δwi + ui + x′
i(β − βovb)

= δwi + ui − x′
iE[xix′

i]
−1E[xiwi]︸ ︷︷ ︸

projection of wi on xi

δ

= ui + δ

(
wi −

γσ2
w

σ2
x

(xi − µx)

)
︸ ︷︷ ︸

part of wi orthogonal to xi

= ui + δw⊥
i where w⊥

i = wi −
γσ2

w

σ2
x

(xi − µx)
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And thus,

E[u2
ovb,i|xi] = E[(ui + δw⊥

i )
2|xi]

= E[u2
i |xi] + 2δE[uiw

⊥
i |xi] + δ2E[(w⊥

i )
2|xi]

= σ2
u + 2δ

E[uiwi|xi]−
γσ2

w

σ2
x

(xi − µx)E[ui|xi]︸ ︷︷ ︸
0

+ δ2E[(w⊥
i )

2|xi]

lie
= σ2

u + 2δE[wi E[ui|xi, wi]︸ ︷︷ ︸
0

|xi] + δ2E[(w⊥
i )

2|xi]

= σ2
u + δ2E[(w⊥

i )
2|xi]

Notice that, by the law of total variance, E[(w⊥
i )

2|xi] = Var(w⊥
i |xi) + E[w⊥

i |xi]
2. Now, since

w⊥
i is the component of wi that is orthogonal to xi and by the projection interpretation of the

conditional variance, E[w⊥
i |xi] = 0. And thus, since by assumption Var(w⊥

i |xi) = Var(w⊥
i ),

E[(w⊥
i )

2|xi] = Var(w⊥
i |xi)

= Var(w⊥
i )

= E[(w⊥
i )

2]− E[w⊥
i ]

2

= E

[(
wi −

γσ2
w

σ2
x

(xi − µx)

)2
]
−

E[wi]︸ ︷︷ ︸
0

+
γσ2

w

σ2
x

E[xi − µx]︸ ︷︷ ︸
0

2

= E[w2
i ]︸ ︷︷ ︸

σ2
w

−2
γσ2

w

σ2
x

E[xiwi]︸ ︷︷ ︸
γσ2

w

−µx E[wi]︸ ︷︷ ︸
0

+
γ2σ4

w

σ4
x

E[(xi − µx)
2]︸ ︷︷ ︸

σ2
x

= σ2
w

(
1− γ2σ2

w

σ2
x

)
Note that this variance is well defined (positive) only if σ2

x ≥ γ2σ2
w. Under this condition,

E[u2
ovb,i|xi] = σ2

u + δ2σ2
w

(
1− γ2σ2

w

σ2
x

)
(9)

Thus, under our set of assumptions, E[u2
ovb,i|xi] does not depend on xi and

E[u2
ovb,i|xi] = E[u2

ovb,i]. We denote this quantity σ2
uovb

.

We can now compute the variance of the estimator β̂ovb, noting that E[xix′
iu

2
ovb,i] =

E[xix′
iE[u2

ovb,i|xi]] = E[xix′
iσ

2
uovb

] = σ2
uovb

E[xix′
i]. And thus E[xix′

i]
−1E[xix′

iu
2
ovb,i]E[xix′

i]
−1 =

σ2
uovb

E[xix′
i].
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Plugin this and equation 8 into equation 7, we get, for β̂ovb, the second component of β̂ovb:

β̂ovb
d→ N

β1 +
δγσ2

w

σ2
x

,
σ2
u + δ2σ2

w

(
1− γ2σ2

w

σ2
x

)
n σ2

x


Then, noting that ρxw = corr(x,w) = cov(µx+γw+ϵ,w)

σxσw
= γσw

σx
, we have:

σ2
ovb = avar

(
β̂ovb

)
=

σ2
u + δ2σ2

w (1− ρ2xw)

n σ2
x

I. 3 Asymptotic distribution of β̂ctrl (lemma 3)

Proof. The proof is the well know proof of the asymptotic distribution of the OLS. I simply compute
E[xw,ix

′
w,i]

−1 to retrieve the variance of the parameter of interest βctrl. We know that we have:

√
n(β̂ctrl − βctrl)

d→ N
(
0,E[xw,ix′

w,i]
−1σ2

u

)
We are interested in the second component of β̂ctrl. To retrieve it we need to compute

E[xw,ix′
w,i]

−1.

E[xw,ix′
w,i] = E

 1 xi w

xi x2
i xiwi

wi xiwi w2
i

 =

 1 µx 0

µx σ2
x + µ2

x γσ2
w

0 γσ2
w σ2

w


Note that we have E[xiwi] = E[xi]E[wi]︸ ︷︷ ︸

0

+cov(xi, wi) = γ var(wi)︸ ︷︷ ︸
σ2
w

+ cov(ϵi, wi)︸ ︷︷ ︸
0

= γσ2
w.

Now, E[xw,ix′
w,i]

−1 =
1

det(E[xw,ix′
w,i])

tC with C the comatrix of E[xw,ix′
w,i]. We have:

det(E[xw,ix′
w,i]) = (σ2

x + µ2
x)σ

2
w − σ2

wµ
2
x − γ2σ4

w = σ2
w(σ

2
x − γ2σ2

w)

and the “central” component of C, σ2
w. Thus the central component of interest of E[xw,ix′

w,i]
−1

is 1
σ2
x−γ2σ2

w
. Therefore, for β̂ctrl, the second component of β̂ctrl, we have:

β̂ctrl
d→ N

(
β1,

σ2
u

n (σ2
x − γ2σ2

w)

)
(10)
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Then, noting that ρxw = corr(x,w) = cov(µx+γw+ϵ,w)
σxσw

= γσw

σx
, we have:

σ2
ctrl =

σ2
u

n σ2
x(1− ρ2xw)

I. 4 Asymptotic distribution of β̂iv (lemma 4)

Proof. Since uiv = uovb = δw+u, we have σ2
uiv

= σ2
u+δ2σ2

w. Thus, the usual asymptotic distribution
of the IV gives:

√
n(β̂iv − β)

d→ N
(
0, (σ2

u + δ2σ2
w)E[zix′

i]
−1E[ziz′i]

(
E[zix′

i]
−1
)′)

We are interested in the second component of β̂iv. To retrieve it we need to compute E[zizi],
E[xiz′i]−1 and its transpose.

E[ziz′i] = E

[
1 zi

zi z2i

]
=

[
1 µz

µz σ2
z + µ2

z

]

E[zix′
i] =

[
1 E[xi]

E[zi] E[zixi]

]
=


1 π0 + π1E[zi] + γ E[wi]︸ ︷︷ ︸

0

+E[ei]︸︷︷︸
0

µz π0E[zi] + π1E[z2i ] + γ E[ziwi]︸ ︷︷ ︸
0

+E[ziei]︸ ︷︷ ︸
0

 =

[
1 π0 + π1µz

µz π0µz + π1(σ
2
z + µ2

z)

]

⇒ E[zix′
i]
−1 =

1

π1σ2
z

[
π0µz + π1(σ

2
z + µ2

z) −π0 − π1µz

−µz 1

]
Thus,

E[zix′
i]
−1E[ziz′i]

(
E[zix′

i]
−1
)′
=

1

π1σ2
z

[
2π0µz + π1(σ

2
z + µ2

z) +
π2
0

π1
−µz − π0

π1

−µz − π0

π1

1
π1

]

And so, for β̂iv, the second component of β̂iv, we have:

√
n
(
β̂iv − β1

)
d→ N

(
0,

σ2
u + δ2σ2

w

n π2
1σ

2
z

)
(11)
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Now, since ρxz = corr(xi, zi) =
cov(π0+π1zi+γwi+ei,zi)

σxσz
= π1

σz

σx
,

√
n
(
β̂iv − β1

)
d→ N

(
0,

σ2
u + δ2σ2

w

σ2
xρ

2
xz

)

I. 5 Asymptotic distribution of β̂red (lemma 5)

Proof. The proof is straightforward: this is the usual univariate, unbiased case, with and error
term equal to (δ + β1γ)wi + ui + β1ei. Since w, u and ϵred uncorrelated, its variance is (δ +

β1γ)
2σ2

w + σ2
u + β2

1σ
2
e .
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